Competitive inhibition of copper amine oxidases by vitamin B hydrochloride in chickpea

Document Type: Original article


1 Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of Science, Faculty of Medicine, University of Medical Science, Ardabil, Iran


Copper amine oxidases (CAOs) catalyse the oxidative de-amination of biogenic amines which are ubiquitous compounds essential for cell growth and proliferation. The enzymes are homodimers containing both topaquinone and a Cu(II) ions as cofactors at the active site of each subunit. After extraction and purification of chickpea (cicer arietinum) amine oxidase by chromatoghraphy, Km and Vmax of the enzyme were determined to be 3.3 mM and 0.95 mmol/min/mg, respectively, using a Lineweaver-Burk plot. In this study, the interaction of chickpea diamino oxidase with vitamin B hydrochloride was studied. Vitamin B hydrochloride (Thiamin) by Ki=8 mM acted as competitive inhibitor of the enzyme.


1. Frébort I, Adachi O. Copper/quinone-containing amine oxidases, an exciting class of ubiquitous enzymes. J Ferment Bioeng 1995;80:625-632.

2. Longu S, Mura A, Padiglia A, Medda R, Floris G. Mechanism -based inactivators of plant copper/quinone containing amine oxidases. Phytochemistry 2005;66:1751-1758.

3. Heli H, Amani M, Moosavi-Movahedi A, Jabbari A, Floris G, Mura A. electroactive centers in euphorbia latex and lentil seedling amine oxidase. Biosci Biotechnol Biochem 2008;72:29-36.

4. Mura A, Padiglia A, Medda R, Pintus F, Agro A, Floris G. Properties of copper-free pig kidney amine oxidase: Role of topa quinine. FEBS Lett 2006;580: 4317-4324.

5. Dawkes H, Phillips S. Copper amine oxidase: cunning cofactor and controversial copper. Curr Opin Struct Biol 2001;11:666-673.

6. Di Paolo M, Vianello F, Stevanato R, Rigo A. Kinetic characterization of soybean seedling amine oxidase. Arch Biochem Biophys 1995;323:329-334.

7. Liu YH, Liang WL, Lee CHCH, Tsai YF, Hou WCH. Antioxidant and semicarbazide-sensitive amine oxidase inhibitory activities of glucuronic acid hydroxamate. Food Chem 2011;129:423-428.

8. Masini E, Bani D, Marzocca C, Mateescu MA, Mannaioni PF, Federico R, Mondovì B. Pea seedling histaminase as a novel therapeutic approach to anaphylactic and inflammatory disorders. Sci World J 2007;7:888-902.

9. Wilmot CM. Oxygen activation in a copper containing amine oxidase. Biochem Soc Trans 2003;31:493-496.

10. Medda R, Pintus F, Spanó D, Floris G. Bioseparation of four proteins from euphorbia characias latex: amine oxidase, peroxidase, nucleotide pyrophosphatase/ phosphodiesterase, and purple acid phosphatase. Biochem Res Int 2011;2011:369484.

11. Nunes SF, Figueiredo IV, Pereira JS, De Lemos ET, Reis F, Teixeira F, Caramona MM. Monoamine oxidase and semicarbazide-sensitive amine oxidase kinetic analysis in mesenteric arteries of patients with type 2 diabetes. Physiol Res 2011; 60:309-315.

12. Sinigaglia G, Magro M, Miotto G, Cardillo S, Agostinelli E, Zboril R, Bidollari E, Vianello F. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. Int J Nanomed 2012;7:2249-2259.

13. Murray JM, Kurtis CR, Tambyrajah W, Saysell CG, Wilmot CM, Parsons MR, Phillips SE, Knowles PF, McPherson MJ. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential. Biochemistry 2001;40:12808-12818.

14. Murakawa T, Hayashi H, Taki M, Yamamoto Y, Kawano Y, Tanizawa K, Okajima T. Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors. J Biochem 2012;151:167-178.

15. Klema VJ, Wilmot CM. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int J Mol Sci 2012; 13:5375-5405.

16. Tisi A, Angelini R, Cona A. Does polyamine catabolism influence root develop-ment and xylem differentiation under stress conditions? Plant Signal Behav 2011;6:1844-1847.

17. Aġostinelli E. Spermine oxidation products induce mitochondrial alterations on tumor cells. Acta Facultatis Medicae Naissensis 2012;29:111-116.

18. Brazeau BJ, Johnson BJ, Wilmot CM. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch Biochem Biophys 2004;428:22-31.

19. Pietrangeli P, Bellelli A, Fattibene P, Mondovì B, Morpurgo L. Lathyrus cicera copper amine oxidase reactions with tryptamine. J Inorg Biochem 2012;109:33-39.

20. Chen Z, Datta S, DuBois JL, Klinman JP, Mathews FS. Mutation at a strictly-conserved, active-site tyrosine in the copper amine oxidase leads to uncontrolled oxygenase activity. Biochemistry 2010;49:7393-7402.

21. Chang CM, Klema VJ, Johnson BJ, Mure M, Klinman JP, Wilmot CM. Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha. Biochemistry 2010;43:2540-2550.

22. Pirrat P, Smith MA, Pearson AR, McPherson MJ, Phillips SE. Structure of a xenon derivative of Escherichia coli copper amine oxidase: confirmation of the proposed oxygen-entry pathway. Acta Crystallogr Section F 2008;64:1105-1109.

23. Langley DB, Trambaiolo DM, Duff AP, Dooley DM, Freeman HC, Guss JM. Complexes of the copper-containing amine oxidase from Arthrobacter globiformis with the inhibitors benzylhydrazine and tranylcypromine. Acta Crystallogr Section F 2008;64:577-583.

24. Langley DB, Brown DE, Cheruzel LE, Contakes SM, Duff AP, Hilmer KM, Dooley DM, Gray HB, Guss JM, Freeman HC. Enantiomer-specific binding of ruthenium(II) molecular wires by the amine oxidase of Arthrobacter globiformis. J Am Chem Soc 2008;130:8069-8078.

25. Peter CH, Laliberté J, Beaudoin J, Labbé S. Copper distributed by Atx1 is available to copper amine oxidase 1 in Schizosaccharomyces pombe. Eukaryot Cell 2008;7:1781-1794.

26. Kataoka M, Oya H, Tominaga A, Otsu M, Okajima T, Tanizawa K, Yamaguchi H. Detection of the reaction intermediates catalyzed by a copper amine oxidase. J Synchrotron Radiat 2011;18:58-61.

27. Shepard  EM, Okonski KM, Dooley DM. Kinetics and spectroscopic evidence that the Cu(I)- semiquinone intermediate reduces molecular oxygen in the oxidative half- reaction of arthrobacter globiformis amine oxidase. Biochemistry 2008;47:13907-13920.

28. Mukherjee A, Smirnov VV, Lanci MP, Brown DE, Shepard EM, Dooley DM, Roth JP. An inner-sphere mechanism for molecular oxygen reduction catalyzed by copper amine oxidases. J Am Chem Soc 2008;130:9459-9473.

29. Sun J, Morita H, Chen G, Noguchi H, Abe I. Molecular cloning and characterization of copper amine oxidase from Huperzia serrata. Bioorg Med Chem Lett 2012;22: 5784-5790.

30. Olivieri A, Tipton KF, O'Sullivan J. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine. Biochim Biophys Acta  2012;1820:482-487.

31. Calinescu C, Mondovi B, Federico R, Ispas-Szabo P, Mateescu MA. Carboxymethyl starch: chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery. Int J Pharm 2012;428:48-56.

32. Foster A, Barnes N, Speight R, Keane MA. Identification, functional expression and kinetic analysis of two primary amine oxidases from rhodococcus opacus. J Mol Catal B Enzym 2012;74:73-82.

33. Rosini L, Nossa S, Valentino M, D’Arrigo P, Marinesco S, Pollegioni L. Expression of rat diamine oxidase in Escherichia coli. J Mol Catal B Enzym 2012;82:115-120.

34. Bachrach U. Polyamines and carcinogenesis. Acta Facultatis Medicae Naissensis 2012;29:165-174.

35. Kivirand K, Rinken T. Purification and properties of amine oxidase from pea seedlings. Proc Estonian Acad Sci Chem 2007;56:164-171.

36. Zhang YM, Livingstone JR, Hirasawa E. Purification and characterisation of monoamine oxidase from Avena sativa. Acta Physiol Plant 2012;34:1411-1419.

37. Brazeau B, Johnson B, Wilmot C. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch Biochem Biophys 2004;428:22-31.

38. Pietrangeli P, Nocera S, Fattibene  P, Wang  X, Momdoví  B, Morpurgo L. Modulation of bovine serum amine oxidase activity by hydrogen peroxide. Biochem Biophys Res Commun 2000;267:174-178.

39. An Zh, Jing W, Liu Y, Zhang W. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 2008;59:815-825.

40. Dooley DM. Structure and biogenesis of topaquinone and related cofactors. Biol Inorg Chem 1999;4:1-11.

41. Ghosh S, Cirera J, Vance MA, Ono T, Fujisawa K, Solomon EL. Spectroscopic and electronic structure studies of phenolate Cu (II) complexes: phenolate ring orientation and activation related to cofactor biogenesis. J Am Chem Soc 2008;130:16262-16273.

42. Stránská J, Šebela M, Tarkowski P, Řehulka P, Chmelík J, Popa I, Peč P. Inhib- ition of plant amine oxidases by a novel series of diamine derivatives. Biochimie 2007;89:135-144.

43. Pietrangeli P, Federico R, Mondoví B, Morpurgo L. Substrate specificity of copper-containing plant amine oxidases. Journal of Inorganic Biochemistry 2007;101:997-1004.

44. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P. Functions of amine oxidases in plant development and defence. Trends Plant Sci 2006;11:80-88.

45. Tisi A, Angelini R, Cona A. Wound healing in plants. Plant Signal Behavior 2008; 3:204-206.

46. Rea G, Metoui O, Infantino A, Federico R, Angelini R. Copper amine oxidase expres- sion in defense responses to wounding and ascochyta rabiei invasion. Plant Physiol 2002;128:865-875.

47. Rea G, De Pinto MC, Tavazza R, Biondi S, Gobbi V, Ferrante P, Gara LD, Federico R, Angelini R, Tavladoraki P. Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants. Plant Physiol 2004;134:1414-1426.

48. Šebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Peč P. FAD containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 2001;160:197-207.

49. Padiglia A, Medda R, Pedersen JZ, Lorrai A, Peč P, Frébort I, Floris G. Inhibitors of plant copper amine oxidases. J Enzyme Inhib 1998;13:311-325.

50. Binda C, Angelini R, Federico R, Ascenzi P, Mattevi A. Structural bases for inhibi- tor binding and catalysis in polyamine oxidase. Biochemistry 2004;40:2766-2776.

51. Kumar V, Dooley DM, Freeman HC, Guss JM, Harvey I, McGuirl MA, Wilce MCJ, Zubak VM. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A° resolution. Structure 1996;4:943-955.

52. Fontecave M, Eklund H. Copper amine oxidase: a novel use for a tyrosine. Structure 1995;15:1127-1129.

53. Medda R, Bellelli A, Peč P, Federico R, Cona A, Floris G. Copper amine oxidases of plants. In copper amine oxidases, Floris G, Mondovì B, Ed. Boca Raton: CRC Press, p 2009;44.

54. Talaei S, Asadi A, Amani M. Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine. Mol Biol Res Commun 2012;1:27-32.

55. Laemmli UK. Cleavage of structural proteins during the assembly of the bacterioph- age T4. Nature 1970;227:680-254.

56. Bardsley WG. Inhibitors of copper amine oxidases. In structure and functions of amine oxidases, Mondovì B, Ed. Boca Raton: CRC Press, p. 1985;135.

57. Šebela M, Lamplot Z, Petrivalský M, Kopecný D, Lemr K, Frébort I, Peč P. Recent news related to substrates and inhibitors of plant amine oxidases. Biochim Biophys Acta 2003;1647:355-360.

58.  Macholán  L. Substrate-like inhibitors of diamine oxidase: some relations between the structure of aliphatic aminoketones and their inhibitory effect. Arch Biochem Biophys 1969;134:302-307.

59. Šebela M, Luhová L, Frébort I, Hirota SH, G. Faulhammer H, Stužka V, Peč P. Confirmation of the presence of a Cu(II)/topa quinone active site in the amine oxidase from fenugreek seedlings. J Exp Bot 1997;48:1897-1907.

60. Peč P, Hlídková E. Inhibition of pea amine oxidase by some derivatives of 4,5- dihyd- roimidazole. Acta Univ Palacky 1987;88:199-206.

61. Macholán L. Selective and reversible inhibition of diamine oxidase by 1,5-diamino-3- pentanone. Coll Czechoslovak Chem Commun 1974;39: 653-661.