Rapid purification of HU protein from Halobacillus karajensis

Document Type: Original article


1 Department of biology,faculty of sciences,Alzahra University

2 department of biology,faculty of sciences,Alzahra University


The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to cruciform DNA and repair intermediates such as nick, gap, bulge, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU protein purification method is required. Here we report a two-step purification procedure of HU from Halobacillus karajensis (the gram positive and moderately halophilic bacteria isolated from Karaj surface soil). The method of HU purification allows obtaining a pure non-tagged protein. Salting out and ion exchange chromatography were applied for purification, and the purified protein was identified by immunoblotting. Results showed that the molecular weight of the purified protein was approximately 11 kDa which is immunologically similar to the Bacillus subtilis HU protein (HBsu).


1. Swinger K, Rice P. Structure-based analysis of HU-DNA binding. J Mol Biol 2007;365: 1005-1016.

2. Anuchin A, Goncharenko A, Demidenok O, Kaprel'iants A. Histone-like proteins of bacteria. Appl Biochem Microbiol 2011;47:635-641.

3. Wang W, Li G, Chen C, Xie X, Zhuang X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 2011;333:1445-1449.

4. Prieto A, Kahramanoglou C, Ali R, Fraser G, Seshasayee A, Luscombe N. Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 2012;40:3524-3537.

 5. Rouviere-Yaniv J, Gros F. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 1975;72:3428-3432.

6. Priyadarshini R, Cugini C, Arndt A, Chen T, Tjokro N, Goodman S, Davey M. The nucleoid-associated protein HUβ affects global gene expression in Porphyromonas gingivalis. Microbiology 2013;159:219-229.

7. Laine B, Kmiecik D, Sautiere P, Biserte G, Cohen-Solal M. Complete amino-acid sequences of DNA-binding proteins HU-1 and HU-2 from Escherichia coli. Eur J Biochem 1980;103:447-461.

8. McGhee J, Felsenfeld G. Nucleosome structure. Annu Rev Biochem 1980;49:1115-1156.

9. Kamashev D, Balandina A, Rouviere-Yaniv J. The binding motif recognized by HU on both nicked and cruciform DNA. EMBO J 1999;18:5434-5444.

10. Benevides J, Danahy J, Kawakami J, Thomas G. Mechanisms of specific and nonspecific binding of architectural proteins in prokaryotic gene regulation. Biochemistry 2008;47:3855-3862.

11. Kamau E, Tsihlis ND, Simmons LA, Grove A. Surface salt bridges modulate the DNA site size of bacteria histone-like HU protein. Biochem J 2005;390:49-55.

12. Kunst F, Ogasawara, N, Moszer, I, Albertini A, Alloni G, Azevedo V, Bertero M, Bessières P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell S, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter N, Choi S, Codani J, Connerton I, Danchin A. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 1997;390:249-256.

13. Kohler P, Marahiel M A. Mutational analysis of the nucleoid-associated protein HBsu of Bacillus subtilis. Mol Gen Genet 1998;260:486-491.

14. Ghadam P, Gharavi S, Yarian F, Soudi MR, Kazemi B, Bandehpour M. Non-radioactive labeled probe preparation for hbs gene detection. Pak J Biol Sci 2009;12: 914-918.

15. Wolfgang K, Marahiel MA. Structure-function relationship regulation of two Basillus subtilis DNA-binding protein, HBsu AbrB. J Mol Microbiol Biotechnol 2002;4:323-329.

16. Amoozegar MA, Malekzadeh F, Malik KA, Schumann P, Spröer C. Halobacillus karajensis sp. nov., a novel moderate halophilic. Int J Syst Evol Microbiol 2003;53: 1059-1063.

17. Nakamura K, Yahagi S, Yamazaki T, Yamane K. Bacillus subtilis histone like protein HBsu is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem 1999;19:13569-13576.

18. Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;277:680-685.

19. Bassam B, Caetano-Anolles G. DNA amplification finger printing using arbitrary oligonucle- otide primers. Appl Biochem Biotechnol 1993;42:189-200.

20. Ghadam P, Ghodsi S, Bandehpour M, Banijamali M, Samadi R. Monospecific polyclonal antiserum production against bacterial HBsu. Microbial Biotechnol 2011;7:1-6. [Persian]

21. Ghodsi S, Gharavi S, Ghadam P. Cloning the hbs gene from Bacillus subtilis and expression of the HBsu protein in Escherichia coli. Iranian J Microbiol 2010;2:152-156.

22. Twobin H, Staehelin T, Gorden J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedures and some applications. Proc Natl Acad Sci USA 1979;79:4350-4354.

23. Demaio A. Protein blotting and Immunoblotting using nitrocellulose membranes. In: BS. Dunbar (ed), Protein blotting. Oxford University Press, Oxford, 1996;11-32.

24. Levitskiy S, Sycheva A, Kharlampieva D, Oberto J, Kamashev D, Serebryakova M, Moshkovskii S, Lazarev V, Govorun V. Purification and functional analysis of recombinant Acholeplasma laidlawii histone-like HU protein. Biochimie 2011;93:1102-1109.