The changes in lipid composition of Pythium irregulare LX oomycetes at a stressful situation created with crude oil

Document Type: Original article

Authors

1 Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2 Institute of Microbiology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan

3 Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran

Abstract

Pythium irregulare oomycetes adapts with environmental changes including crude oil concentration by changing the composition of lipids in the cytoplasmic membrane and providing the required characteristics for adaptation in improper and stressful environmental situations. It was found that cultivation of Pythium irregulare LX oomycetes in the nutrient media with different concentrations of crude oil with 1.0, 2.0, 3.0, 5.0 and 10.0 (%), incubated for 5 days at 26-28°C on a rotary shaker (200 rpm) in aerobic conditions and deep culturing caused an increase in the lipid content and the unsaturation degree of fatty acids, confirming the correspondence between the increase of polar lipid/free sterol in the composition of membrane lipids’ ratio and that of polar lipids in general lipid fractions. Represented data shows that the process of adaptation of oomycetes to a stressful situation created with crude oil motivated the increase of the rate of membrane phospholipids with a high quantity of unsaturated fatty acids.

Keywords


1. Rui H, Kumar R, Im W. Membrane tension, lipid adaptation, conformational changes, and energetics in MscL gating. Biophys J 2011;101:671-679.

2. Russell NJ.  Structural and Functional Role of Lipids. V.2, New York: Academic Press 1989; 731-739.

3. Mehdikhani1 P, Rezazadeh Bari M. Screening of Saccharomyces cerevisiae for high tolerance of ethanol concentration and temperature. Afr J Microbiol Res 2011;5:2654-2660.

4. Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbial Rev 1995;59:201-22.

5. Heipieper HJ, Diefenbach R, Keweloh H. Conversion of Cis unsaturated fatty acids to Trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 1992;58:1847-1852.

6. Mazzella N, Molinet J, Syakti AD, Barriol A, Dodi A, Bertrand JC, Doumenq P Effects of pure n-alkanes and crude oil on bacterial phospholipid classes and molecular species determined by electrospray ionization mass spectrometry. J Chromatography B 2005;822:40-53

7. Mazzella N, Syakti AD, Molinet J, Gilewicz M, Doumenq P. Effects of crude oil on phospholipid fatty acid compositions of marine hydrocarbon degraders: estimation of the bacterial membrane fluidity. Environ Res 2005;97:300-311.

8. Aki T, Matsumoto Y, Morinaga T, Kawamoto S, Shigeta S, Ono K, Suzuki O. Lipid composition of a newly isolated polyunsaturated fatty acid-producing fungus, achlya sp. ma-2801. J Ferment Bioeng 1998;86:504-507.

9. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911-917.

10. Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497-590.

11.  Лакин ГФ. Биометрия. Москва. Высшая школа. 1990;352-356.

12. Попова НП, Бехтерева МН, Давидова ЕГ. Метаболические превращения экзогенных меченых жирных кислот культурами грибов семейства Entomophthoraceae. Микробиология, Т. 1986;55:732-736.

13. Krishna de B, Verma Sh. Characterization of lipids and fatty acids of the soil derived fungus Cladosporium sp. GRASAS Y ACEITES ABRIL-JUNIO, 2011;62:213-220.

14. Tauk-Tornisielo SM, Arasato LS, Almeida AF, Govone JS, Malagutti EN. Lipid formation and linolenic acid production by Mucor circinelloies and Rhizopus sp., grown on vegetable oil. Brazil J Microbiol 2009;40:342-345.

15. Tan L, Meesapyodsuk D, Qiu X. Molecular analysis of Δ6 desaturase and Δ6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials. Appl Microbial Biotechnol 2011;90:591-601.

16. Pollak DW, Bostick MW, Yoon H, Wang J, Hollerbach DH, He H, Damude HG, Zhang H, Yadav NS, Hong SP, Sharpe P, Xue Z, Zhu Q. Isolation of a ∆5 desaturase gene from Euglena gracilis and functional dissection of its HPGG and HDASH motifs. Lipids 2012; 47:247-261.

17. Meesapyodsuk D, Qiu X. The front-end desaturase: structure, function evolution and biotechnological use. Lipids 2012;47:247-261.