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ABSTRACT 
 

Studies on associations of various polymorphisms in xenobiotic metabolizing genes 
with different cancers including acute lymphoblastic leukaemia (ALL) are mixed and 
inconclusive. The current study analyzed the relationship between polymorphisms of 
phase I xenobiotic metabolizing enzymes, cytochromes P450 1A1 (CYP1A1) and 
CYP2D6 and childhood ALL in Kashmir, India. We recruited 200 confirmed ALL 
cases, and an equal number of controls, matched for sex, age and district of residence to 
the respective case. Information was obtained on various lifestyle and environmental 
factors in face to face interviews with the parents/attendants of each subject. Genotypes 
of CYP1A1 and CYP2D6 were analyzed by polymerase chain reaction and restriction 
fragment length polymorphism method. Logistic regression models were used to 
calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Compared to the 
GG genotype, we found a higher ALL risk in subjects who harbored variant (AA) 
genotype (OR=20.9; 95% CI: 6.01-73.1, P<0.0001) and AG genotype (OR=42.6; 95% 
CI: 8.3-217.5, P<0.0001) of CYP2D6*4 polymorphism. Although, we found a 
significant association of CYP1A1*2A polymorphism with ALL risk, but the risk did not 
persist in the adjusted model (OR=6.76; 95% CI: 0.63–71.8, P=0.100). The study 
indicates that unlike CYP1A1*2A, CYP2D6*4 polymorphism is associated with ALL 
risk. However, more replicative studies with larger sample size are needed to 
substantiate our findings. 
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INTRODUCTION 
 
Genetic susceptibility and environmental exposures play roles in the etiology of 

leukemia [1]. Environmental exposures like ionizing radiation, benzene, and cytotoxic 
therapy are some of the proposed causes of acute leukemia and for genetic 
susceptibility, single nucleotide polymorphism (SNP) the most common type that 
consists of a variation at a single base pair. Depending on where it is located, SNPs can 
interfere with a gene’s function, affecting metabolic pathways and thus affecting the 
course of the disease and its progress. SNPs in the xenobiotic system, cell regulation, 
and DNA repair system have been identified as risk factors in childhood leukemia [2, 
3]. Therefore, functional polymorphisms in genes encoding carcinogen-metabolizing 
enzymes may have relevance in determining susceptibility to pediatric cancer [4]. 

All xenobiotics, including therapeutic agents, are metabolized and eliminated from 
the body by a system of enzymes encoded by specific genes. Most of these genes are 
polymorphic and some polymorphic forms have an altered enzyme activity [5]. As the 
cytochrome group represents the first line of defense against toxic chemicals, 
carcinogens and used drugs [6], the genetic variants in these xenobiotic metabolizing 
enzymes can significantly affect the susceptibility to childhood acute lymphoblastic 
leukemia (ALL) [7]. For this reason, two genes of this cytochrome family CYP1A1 and 
CYP2D6 have gained much interest and many genetic variants have been reported in 
both the genes. 

Kashmir valley located at a high altitude in the northern part of India, have 
preserved genetic pool mostly due to consanguineous marriages [8]. Owing to this 
factor and its geographical location Kashmiris show wide genetic diversity from the rest 
of India. There is no population-based tumor registry at this moment and the various 
studies relating to the epidemiologic facts of cancer in Kashmir are essentially hospital 
based. As per the recent study conducted by Muzaffar et al., [9] on pattern and profile of 
childhood malignancies in Kashmir showed that ALL is the leading childhood 
malignancy which accounts for ~37% of the total childhood malignant cases and 
reportedly child is exposed to a range of xenobiotics through maternal and paternal 
lifestyle habits. But the role of polymorphisms in genes involved in such xenobiotic 
metabolism, the interaction among them and with the environment is not yet studied in 
Kashmir. Therefore we conducted a case-control study in Kashmir to assess the risk of 
ALL associated with polymorphisms in CYP1A1 and CYP2D6. 
 
 

MATERIALS AND METHODS 
 
Study subjects and data collection: This study included 200 newly diagnosed 

histopathological confirmed childhood ALL patients and 200 controls. ALL patients 
were diagnosed as per French–American-British (FAB) criteria [10, 11] in the Division 
of Clinical Haematology of Sher-i-Kashmir Institute of Medical Sciences (SKIMS), 
only tertiary care hospital in the whole Kashmir Valley located in Srinagar, the central 
city in Kashmir valley. This study was conducted between March 2012 and December 
2015. The inclusion criteria for ALL cases were (1) Complete clinical history was 
available; (2) Patients below the age of 20 years (3) Subjects of Kashmir origin. All the 
controls were recruited from SKIMS and the criteria for inclusion in the control group 
were: (1) Kashmiri patients enrolled for minor ailments (like a hernia, urinary stones, 
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diarrhoea, appendicitis, prostatitis, pancreatitis, fever workup, jaundice, biliary stones, 
trauma/accidents, infections, and fractures). (2) Age, gender, and district matched with 
respective ALL cases and (3) had no history of any malignancy. The research protocol 
was approved by the Institutional Ethics Committee of SKIMS and informed consent 
was obtained from all participating individuals or parents involved in the study. 
Structured questionnaires were used to collect information on age, sex, place of 
residence, parental education, smoking; family history, monthly income and other 
possible confounding factors of interest in face to face interviews. No proxies were used 
in the study. 

       
Collection of blood sample and genotyping: Two milliliters of venous blood was 

collected from each patient in EDTA coated plastic vial and stored at −80ºC before 
DNA extraction. Genomic DNA was extracted from blood samples by using the phenol-
chloroform method [12]. The DNA extracted was quantified and stored at -20ºC until 
used for polymerase chain reaction (PCR) and restriction fragment length 
polymorphism (RFLP). The CYP1A1*2A (rs4646903) and CYP2D6*4 (rs3892097) 
polymorphisms were determined as described previously [13, 14].  

 
Statistical Analysis: Categorical variables were set for presenting and calculating 

numbers and percentages for different variants of CYP2D6 and CYP1A1. Conditional 
logistic regression models were used to calculate odds ratios (ORs) and corresponding 
95 % confidence intervals (CIs) to assess the association of various polymorphisms of 
CYP2D6*4 and CYP1A1*2A with childhood ALL risk and to assess the possible gene–
gene and gene–environment interactions. The adjustment was made for known risk 
factors like age, sex, residence, parental education level, monthly income, parental 
occupation, smoking, family history of cancer and in utero X-ray exposure during 
pregnancy. All statistical analysis was done using Stata software, version 12 (STATA 
Corp., College Station, TX, USA). Two-sided P<0.05 was considered as statistically 
significant. 

 
 

RESULTS  
 
Distribution of demographic factors, the wealth scores a socioeconomic indicator, 

paternal smoking, and allele frequency by case status are shown in Table 1. The 
majority of cases were ≤5 years of age and 60% were males. A number of ALL cases 
resided in rural areas than respective controls. Distribution of non-genetic factors in 
cases and controls including paternal smoking status around the period of conception 
(P=0.045), paternal occupation (P<0.001) and in utero X-ray exposure during pregnancy 
(P=0.045) was significantly different among cases and controls. However, no significant 
differences were observed between parental education (P=0.317), monthly income 
(P=0.230) and family history of cancer (P=0.527) among cases and controls.  

Genotypic frequencies of both CYP1A1 and CYP2D6 in ALL cases and controls are 
summarized in Table 2. We found that both variant (CC) and heterozygous genotype 
(CT) of CYP1A1*2A polymorphism were associated with ALL risk, but this risk did not 
persist in the adjusted model (OR=6.76, P>0.100), when results were adjusted for 
potential confounders. Further, the association did not persist when CC and TT 
genotypes were grouped together in the adjusted model (OR=1.36, P=0.002).  
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Table 1:  Demographic characters of childhood ALL cases and controls 

Variables  Cases n (%) Controls n (%)  Pa 
Age ≤5 110 (55.0) 110 (55.0) 1.000 
 6-10 60 (30.0) 60 (30.0)  
 >10 30 (15.0) 30 (15.0)  
     
Gender Male 120 (60.0) 120 (60.0) 1.000 
 Female 80 (40.0) 80 (40.0)  
     
Dwelling Urban 65 (32.5) 65 (32.5) 1.000 
 Rural 135 (67.5) 135 (67.5)  
     
Paternal occupation Govt. employee  20 (10.0) 55 (27.5) <0.001 
 Business 28 (14.0) 45 (22.5)  
 Farmer 66 (33.0) 54 (27.0)  
 Labour 86 (43.0) 46 (23.0)  
     
Paternal smoking Yes 115 (57.5) 95 (47.5) 0.045 
 No 85 (42.5) 105 (52.5)  
     
Monthly income <10,000 108 (54.0) 96 (48.0) 0.230 
 >10000 92 (46.0) 104 (52.0)  
     
Parental education Yes 95 (47.5) 105 (52.5) 0.317 
 No 105 (52.5) 95 (47.5)  
     
In utero X-ray exposure during pregnancy Yes 105 (52.5) 85 (42.5) 0.045 
 No 95 (47.5) 115 (57.5)  
     
Family history of cancer   Yes 72 (36.0) 66 (33.0) 0.527 
 No 128 (64.0) 134 (67.0)  
a Chi- square test (χ2) was used to calculate P-values for categorical variables.  n, number of individuals 

 
 
Table 2: Distribution of CYP1A1*2A and CYP2D6*4 genotypes among cases and controls and their 
interaction among themselves in modulating the risk of ALL in Kashmir, India 

Variable Cases n (%) Controls n (%) Crude OR1 (95% CI)2 Adj OR3 (95% CI)2 P  
CYP1A1 
TT 142 (71.0) 168 (84.0) 1.0 1.0 - 
CT 53 (26.5) 31 (15.5) 2.14 (1.30 – 3.56) 1.32 (0.71 – 2.48) 0.005 
CC 5 (2.5) 1 (0.5) 9.70 (1.07 – 87.83) 6.76 (0.63 – 71.88) 0.100 
CC+TC  58 (29.0) 32 (16.0) 2.18 (1.32 – 3.61) 1.36 (0.73 – 2.53) 0.002 

CYP2D6 
GG 86 (43.0 190 (95.0) 1.0 1.0 - 
AG 43 (21.5) 6 (3.0) 26.3 (6.54 – 105.5) 42.67 (8.37 – 217.5) <0.0001 
AA 71 (35.5) 4 (2.0) 27.43 (8.73 – 86.14) 20.96 (6.01 – 73.13) <0.0001 
AA+AG  114 (57.0) 10 (5.0) 27.0 (9.95 – 73.24) 27.73 (9.12 – 84.32) <0.0001 

4Gen- gene interaction between CYP1A1 and CYP2D6      

 (p interaction = 0.487 ; SE = 0.225) 

TT+GG 61 (30.5) 162 (81.0) 1.0 1.0 
CC+TC & GG 25 (12.5) 28 (14.0) 32.68 (10.49 – 101.8) 50.2 (12.57 – 200.7) 
TT & (AA+AG) 81 (40.5) 6 (3.0) 2.02 (0.98 – 4.16) 1.24 (0.48 – 3.22) 
CC+TC & 
AA+AG 

33 (16.5) 4 (2.0) 26.40 (6.19 – 112.6) 8.81 (2.07 – 37.57) 

1OR=odds ratio. 2CI=confidence interval  
3Adjusted ORs were obtained from conditional logistic regression models when adjusted for age, family history, 
parental education level, paternal occupation, place of residence, socioeconomic status and paternal smoking. 
 

 
High risk of ALL was found in the AA (OR=20.9, P<0.0001) and AG genotypes of 

CYP2D6*4 (OR=42.6; P<0.0001) and the risk was retained when (AA) and (AG) 
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carriers were grouped together (OR=27.7, P<0.0001). The magnitude of risk associated 
with AA, AG, and AG + AA was almost similar in the unadjusted model. Further, on 
analyzing any possible gene–gene interaction, we did not find any significant 
interactions between CYP1A1 and CYP2D6 (p interaction=0.487). 

 
 

DISCUSSION 
 
The present study determined the association of CYP1A1 and CYP2D6 

polymorphisms with ALL risk in Kashmiri population. This population has relative 
genetic homogeneity [8] which makes it an ideal genetic model for carrying out such 
studies. We found that unlike CYP1A1*2A, CYP2D6*4 polymorphism is associated 
with ALL risk. CYP450s are heme-containing enzymes important to phase I-dependent 
metabolism of drugs and other xenobiotics [15]. Studies have persistently associated 
polymorphisms in these CYP genes with individual susceptibility to many cancers [16-
20]. However, the role of such polymorphism in cancer development is not conclusive 
[21]. Despite much investigation, little is known about the mechanism of 
leukemogenesis. Polymorphism in CYP2D6 gene at position G1934A causes a 
disruption of the splice site at the intron3/exon4 boundary that leads to incorrect 
splicing of mRNA resulting in a frame shift and premature termination that generates a 
truncated protein [22]. These polymorphisms usually lead to no or reduced activity of 
the CYP2D6 protein, resulting in the poor metabolizer phenotype [23]. Previous studies 
that have assessed the role of CYP2D6 genetic variations in susceptibility to ALL have 
reported mixed results [24, 25]. In the current study, we found that CYP2D6*4 
polymorphism is associated with ALL risk in Kashmir. A plausible explanation for our 
finding could be that as the CYP2D6 gene is involved in the detoxification of 
carcinogenic compounds and consequently due to the absence of enzymatic activity 
genotoxic metabolites gets accumulated in phase I detoxification process resulting in 
higher risk of ALL [24].  

CYP1A1 gene is responsible for metabolic activation of pre-carcinogens [26]. 
Previous work revealed that the polymorphism of Msp I restriction site owing to a T-C 
variation in the 3’ non-coding region of the CYP1A1 allele is experimentally associated 
with increased catalytic activity and increase of the amount of DNA adducts in cord 
blood and placenta of newborns [27]. In the current study, we did not find any 
association of CYP1A1*2A with susceptibility to develop ALL. However, earlier reports 
have shown mixed results for this polymorphism and susceptibility to ALL. Studies 
have either reported the positive association of CYP1A1*2A polymorphism with ALL 
[14, 25] or no association [28]. This inconsistency in the results obtained in various 
studies could be attributed to the variable sample size, the heterogeneity of the 
populations and study design. Epidemiologic studies have propounded that in utero and 
postnatal exposures to various biological, chemical and physical factors may be 
important in determining the susceptibility to childhood ALL [29] and as such infants 
and children may be at greater risk for a variety of environmental toxicants than adults 
due to their physiologic immaturity and/or differential exposure [27]. Xenobiotics enter 
the placenta through the maternal circulation [30]. Placenta has the ability to metabolize 
these compounds through processes similar to those seen in the liver [31]. Therefore, 
alterations in the placental metabolism could modify the exposure of the developing 
fetus to harmful electrophiles. 
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After stratification of data, we found a significant association between paternal 
smoking with the risk of ALL (P=0.045). Stronger evidence is accumulating now for the 
role of paternal smoking as reported in several individual studies and meta-analyses of 
ALL [32, 33]. Whilst smoking clearly impacts DNA damage which is important in 
carcinogenesis and therefore may influence the risk of ALL [34]. Paternal exposure is of 
concern, due to possible germline effects for fathers and passive exposure of pregnant 
women due to cross placental transfer from mother to baby. In utero exposure to low-
dose radiation delivered from medical X-rays is one of the few widely recognized risk 
factors for childhood leukemia [35] and hence the early life exposures to these 
radiations have been implicated in the etiology of childhood ALL [36]. The increased 
risk of ALL conferred by in utero X-ray exposure found in this study is in agreement 
with the recent study [37]. However, other reports did not support these results [38]. To 
our knowledge, this is the first investigation that attempted to study the impact of 
polymorphisms of CYP1A1 and CYP2D6 on the risk of childhood ALL in Kashmir 
valley. Besides this study assessed the role of certain non-genetic factors in the 
development of ALL as well. However further studies with larger sample size are 
warranted to replicate the findings. 
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