Taxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis

Document Type : Original article

Authors

Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) Paseo Victoria Ocampo Nº1, Escollera Norte, B7602HSA Mar del Plata, Provincia de Buenos Aires, República Argentina

Abstract

Taxonomically, Argentine mackerels were first considered as Scomber japonicus marplatensis and later as Scomber japonicus Houttuyn 1782, although, in the last years, different studies have suggested that South Atlantic mackerel species belongs to Scomber colias Gmelin 1789. These latter results, incorporated in the main fish databases (FishBase and Catalog of Fishes), promoted a phylogenetic study using cytochrome c oxidase I (COI) gene sequences taken from the Barcode of Life (FISH-BOL) database. Thus, 76 sequences of S. japonicus, S. colias, S. australasicus and S. scombrus from different regions were used; including 3 from Sarda sarda as outgroup. Among S. japonicus selected sequences are those corresponding to the Argentine mackerels collected in 2007. Phylogenetic trees were obtained by neighbor joining and maximum likelihood methods and a network of haplotypes was reconstructed to analyze the relationship between species. The results showed the clear differentiation of S. australasicus, S. scombrus and S. japonicus from the Pacific while S. japonicus from Argentina was included in the S. colias group, with genetic differences corresponding to conspecific populations (0.1%). Four of the five Argentine specimens shared the same haplotype with S. colias, and none were shared with S. japonicus from the Pacific. These results suggest that the current specific name of Argentine mackerel S. japonicus should be changed to S. colias, in agreement with several genetic studies carried out with species of the genus Scomber.

Keywords


1. Collette BB, Nauen CE Scombrids of the world. FAO Species Catalogues, FAO Fisheries Synopsis 1983, Nº 125, vol. 2.
2. Matsui T. Review of the mackerel genera Scomber and Rastrelliger with description of a new species of Rastrelliger. Copeia 1967;1:71-83.
3. Rivas LR. A preliminary review of the western North Atlantic fishes of the family Scombridae. B Mar Sci 1951;1:209-230.
4. Lopez RL. La caballa del  mar Argentino (Nota preliminar). Rev Soc Arg Dietología 1955; 13: 8pp
5. Collette BB. Mackerels, molecules, and morphology. In: Séret B, Sire J-Y (eds). Proceedings of the 5th Indo-Pacific Fish Conference, Nouméa, 1997. 1999: 149–164
6. Castro Hernández JJ, Santana Ortega AT. Synopsis of biological data on the chub mackerel (Scomber japonicus Houttuyn, 1782). FAO Fisheries Synopsis 2000; Nº 157, FAO, Rome.
7. Collette  B B. Family Scombridae Rafinesque 1815. Mackerels, tunas, and bonitos. Annotated Checklists of Fishes, volume 19. 2003; California Academy of Sciences, San Francisco, CA. ISBN 1545-150X
8. Infante C, Blanco E, Zuasti E, Crespo A, Manchado M. Phylogenetic differentiation between Atlantic Scomber colias and Pacific Scomber japonicus based on nuclear DNA sequences. Genetica 2007;130:1-8.
9. Catanese G, Manchado M, Infante C. Evolutionary relatedness of mackerels of the genus Scomber based on complete mitochondrial genomes: Strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene 2010;452:35-43.
10. Froese R, Pauly D (Editors). FishBase. World Wide Web electronic publication version (01/2016). : http://www.fishbase.org
12. Conover DO, Clarke LM, Munch SB, Wagner GN. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J Fish Biol 2006;69:21-47.
13. Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG, Poulsen JY, Fukunaga T, Nishida M.  Evolutionary origin of the Scombridae (tunas and mackerels): members of a Paleogene adaptive radiation with 14 other pelagic fish families. PLoS ONE 2013; 8:e73535.
14. Kijima A, Taniguchi N, Ochiai A. Genetic divergence and morphological difference between the spotted and common mackerel. Ichthyol Res 1986;33:151-161.
15. Stepien CA, Rosenblatt RH. Genetic divergence in antitropical pelagic marine fishes (Trachurus, Merluccius, and Scomber) between North and South America. Copeia 1996;3:586-598.
16. Roldan MI, Perrotta RG, Cortey M, Pla C.  Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus. J Exp Mar Biol Ecol 2000;253:63-74.
17. Scoles DR, Collette BB, Graves JE.  Global phylogeography of mackerels of the genus Scomber. Fish Bull 1998;96:823-842.
18. Paine MA, Mcdowell JR, Graves JE. Specific identification of western Atlantic Ocean scombrids using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene region sequences. Bull Mar Sci 2007;80:353-367.
19. Cheng J, Gao T, Miao Z, Yanagimoto T.  Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences. Chin J Oceanol Limn 2011;29:297-310.
20. Lopez RL.  La caballa del Mar Argentino. 1. Sistemática, distribución y pesca. Comun Mus Argent Cien Nat B Rivadavia, Cienc. 1959; 3:95-130.
21. Angelescu V, Gneri F. Resultados preliminares de las investigaciones sobre biología y pesca de la caballa en el área de Mar del Plata Scomber japonicus. CARPAS Doc Téc 1964; 3, 21 pp.
22. Perrotta RG, Aubone A, Sanchez F. Estudio comparado de los caracteres morfométricos y merísticos de la caballa (Scomber japonicus Houttuyn, 1782) (Teleostei: Scombridae) del sur de Brasil y del área marplatense (Mar Argentino). Scient Mar 1990;54:47-53.
23. MINAGRI. República Argentina. Exportaciones e Importaciones pesqueras – 2015. Subsecretaría de Pesca y Acuicultura. Dirección de Economía Pesquera. 2016: 46 pp.
24. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.  Nucl Acids Symp Ser 1999;41:95-98. 
25. Abascal F, Irisarri I, Zardoya R. Filogenia y Evolución Molecular. In: Sebastián A & Pascual-García, A. (ed) Bioinformática con Ñ. Vol. 1: Principios de Bioinformática. Createspace, España, 2014:231-257.
26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-2729.
27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-120.
28. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-791.
29. Librado P, Rozas J. DnaSP v5. A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009;25:1451-1452.
30. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999;16:37-48.
31. Tzeng CH, Chen CS, Tang PC, Chiu TS. Microsatellite and mitochondrial haplotype differentiation in blue mackerel (Scomber australasicus) from the western North Pacific. ICES J Mar Sci 2009;66:816-825.
32. Hebert PD, Cywinska A, Ball A, De Waard JR. Biological identifications through DNA barcode. Proc R Soc Lond Ser B: BiolSci 2003;270:313-322.
33. Ward R. DNA barcode divergence among species and genera of birds and fishes. Mol Ecol Resour 2009;9:1077-1085.
34. Rasmussen RS, Morrissey MT, Hebert PD. DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. J Agr Food Chem 2009;57:8379-8385.
35. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 2008;3:e2490.
36. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. DNA barcoding Australia´s fish species. Philos Trans R Soc Lond Ser B: Biol Sci 2005;360:1847-1857.
37. Cawthorn D, Steinman HA, Corli Witthuhn R. Establishment of a mitochondrial DNA sequence database for the identification of fish species commercially available in South Africa. Mol Ecol Resour 2011;11:979-991.