Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis

Document Type : Original article

Authors

Department of Bioinformatics, G.G.D.S.D. College, Chandigarh, India

Abstract

Current re-emergence of Nipah virus (NiV) in India caused 11 deaths so far and many patients were kept in quarantine. A thorough study of previous outbreaks occurred in Malaysia, Bangladesh and India represents cases with high rate of fatality due to acute encephalitis. Our work involves genome analysis of NiV for prediction of miRNAs and their targeted genes in human in order to understand encephalitis origin. Ab-intio program-VMir was used for initial screening of genome, obtained nine pre-miRNAs was analyzed by ViralMir to check for any pseudo pre-miRNAs. Eighteen functional mature miRNAs were extracted from pre-miRNAs by using Mature-Bayes tool, which targets 669 genes in human genome as retrieved by miRDB. Gene ontology terms by PANTHER provide important pathways in which target genes were involved like Axon guidance, T cell activation, and nicotinic acetylcholine receptor signaling. Significant outcome was obtained after NCBI Gene and OMIM database mining and literature search for predicted target genes. TLR3, TJP1, NOTCH2, FHL1, and GRIA3 target genes obtained showed their involvement in host defense, blood brain barrier, neurogenesis, mental retardation and encephalitis. To conclude, we predicted significant genes in human that can be inhibited by miRNAs of NiV and results in etiology of encephalitis.

Keywords


1. Lo Presti A, Cella E, Giovanetti M, Lai A, Angeletti S, Zehender G, Ciccozzi M. Origin and evolution of Nipah virus. J Med Viro 2016;88:380-388.
2. Allocati N, Petrucci AG, Di Giovanni P, Masulli M, Di Ilio C, De Laurenzi V. Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discov 2016;2:16048.
3. Clayton BA, Nipah virus: transmission of a zoonotic paramyxovirus. Curr Opin Virol 2017;22:97-104.
4. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, Khan R, Ahmed BN, Rahman S, Nahar N, Kenah E, Comer JA, Ksiazek TG. Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 2006;12:1888-1894.
5. Gurley ES, Montgomery JM, Hossain JM, Bell M, Azad AK, Islam MR, Molla MAR, Carroll DS, Thomas G. Paul KA. Rota, Lowe L, Comer JA, Rollin P, Czub M, Grolla A, Feldmann H, Stephen P, Jennifer LL, Breiman WRF. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007;13:1031-1037.
6. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect 2001;3:307-314.
7. Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, Zaki SR, Rota PA, Ling AE, Ksiazek TG, Chew SK, Anderson LJ. Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 2000;181:1760-1763.
8. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra CA. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 2006;12: 235-240.
9. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, Niezgoda M, Rupprecht C, Bresee J, Breiman RF. Nipah virus encephalitis rteemergence, Bangladesh. Emerg Infect Dis 2004;10:2082-2087.
10. Giangaspero M. Nipah virus. Trop Med Surg 2013;01:2910.
11. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis 2009;15:1229-1235.
12. Hassan MZ, Sazzad HMS, Luby SP, Sturm-Ramirez K, Bhuiyan MU, Rahman MZ, Islam MM, Stroher U, Sultana S, Kafi MAH, Daszak P, Rahman M, Gurley ES. Nipah virus contamination of hospital surfaces during outbreaks, Bangladesh, 2013-2014. Emerg Infect Dis 2018;24:15-21.
13. Harit AK, Ichhpujani RL, Gupta S, Gill KS, Lal S, Ganguly NK, Agarwal SP. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J Med Res 2006;123:553-560.
14. Arankalle VA, Bandyopadhyay BT, Ramdasi AY, Jadi R, Patil DR, Rahman M, Majumdar M, Banerjee PS, Hati AK, Goswami RP, Neogi DK, Mishra AC. Genomic characterization of Nipah virus, West Bengal, India. Emerg Infect Dis 2011;17:907-909.
15. Sherrini BA, Chong TT. Nipah encephalitis-an update. Med J Malaysia 2014;69 Suppl A:103-111.
16. Ng BY, Lim CC, Yeoh A, Lee WL. Neuropsychiatric sequelae of Nipah virus encephalitis. J Neuropsychiatry Clin Neurosci 2004;16:500-504.
17. Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, Wong KT, Abdullah BJ, Chua KB, Lam SK. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000;342:1229-1235.
18. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002;161:2153-2167.
19. Tan CT, Chua KB. Nipah virus encephalitis. Curr Infect Dis Rep 2008;10:315-320.
20. Hossain MJ, Gurley ES, Montgomery JM, Bell M, Carroll DS, Hsu VP, Formenty P, Croisier A, Bertherat E, Faiz MA, Azad AK, Islam R, Molla MA, Ksiazek TG, Rota PA, Comer JA, Rollin PE, Luby SP, Breiman RF. Clinical presentation of nipah virus infection in Bangladesh. Clin Infect Dis 2008;46:977-984.
21. Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. Indian J Virol 2013;24:398-408.
22. Bellini WJ, Harcourt BH, Bowden N, Rota PA. Nipah virus: an emergent paramyxovirus causing severe encephalitis in humans. J Neurovirol 2005;11:481-487.
23. Daniels P, Ksiazek T, Eaton BT. Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect 2001;3:289-295.
24. Epstein JH, Field HE, Luby S, Pulliam JR, Daszak P. Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 2006;8:59-65.
25. Chong HT, Kamarulzaman A, Tan CT, Goh KJ, Thayaparan T, Kunjapan SR, Chew NK, Chua KB, Lam SK. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001;49:810-813.
26. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012;19:586-593.
27. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-531.
28. Lukasik A, Zielenkiewicz P. Plant microRNAs-novel players in natural medicine. Int J Mol Sci 2017;18:9.
29. Moran Y, Agron M, Praher D, Technau U. The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol 2017;1:27.
30. Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 2012;8:e1003018.
31. Carl JW, Trgovcich J, Hannenhalli S. Widespread evidence of viral miRNAs targeting host pathways. BMC Bioinformatics 2013;14(Suppl 2): S3.
32. Cullen BR. Viruses and microRNAs. Nat Genet 2006;38 Suppl:S25-30.
33. Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 2013;14:205-210.
34. Bruscella P, Bottini S, Baudesson C, Pawlotsky JM, Feray C, Trabucchi M. Viruses and miRNAs: More friends than foes. Front Microbiol 2017;8:824.
35. Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011;411:325-343.
36. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116: 281-297.
37. Samols MA, Hu J, Skalsky RL, Renne R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 2005;79:9301-9305.
38. Shi J, Duan Z, Sun J, Wu M, Wang B, Zhang J, Wang H, Hu N, Hu Y. Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches. Virol J 2014;11:121.
39. Ospina-Bedoya M, Campillo-Pedroza N, Franco-Salazar JP, Gallego-Gomez JC. Computa-tional identification of dengue virus microRNA-like structures and their cellular targets. Bioinform Biol Insights 2014;8:169-176.
40. Pylro VS, Oliveira FS, Morais DK, Cuadros-Orellana S, Pais FS, Medeiros JD, Geraldo JA, Gilbert J, Volpini AC, Fernandes GR. ZIKV - CDB: A collaborative database to guide research linking SncRNAs and ZIKA virus disease symptoms. PLoS Neg Trop Dis 2016;10: e0004817.
41. Teng Y, Wang Y, Zhang X, Liu W, Fan H, Yao H, Lin B, Zhu P, Yuan W, Tong Y, Cao W. Systematic Genome-wide Screening and Prediction of microRNAs in EBOV During the 2014 Ebolavirus Outbreak. Sci Rep 2015;5:9912.
42. Saxena VL, Dwivedi A. In silico identification of miRNAs and their target prediction from Japanese encephalitis. J Bioinform Seq Anal 2013;5:25-33.
43. Saini S, Thakur CJ, Kumar V. Genome wide computational prediction of miRNAs in Kyasanur forest disease virus and their targeted genes in human. Innov Thoug Intern Res J 2017;5:13-46.
44. Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gammaherpesviruses. RNA 2006; 12:733-750.
45. Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011;411:325-343.
46. Huang KY, Lee TY, Teng YC, Chang TH. ViralmiR: a support-vectormachine method for predicting viral microRNA precursors. BMC Bioinformatics 2015;16 Suppl 1:S9.
47. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406-3415.
48. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One 2010;5:e11843.
49. Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 2016;43(D1):D146-D152.
50. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 2013;8:1551-1566.
51. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R; Gene Ontology Consortium. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-D261.
52. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005;33(Database Issue):D514-D517.
53. Allmer J, Yousef M. Computational methods for ab initio detection of microRNAs. Front Genet 2012;3:209.
54. Allmer J. Computational and bioinformatics methods for microRNA gene prediction. Methods Mol Biol 2014;1107:157-175.
55. Kumar S, Ansari FA, Scaria V. Prediction of viral microRNA precursors based on human microRNA precursor sequence and structural features. Virol J 2009;6:129.
56. Gomes CP, Cho JH, Hood L, Franco OL, Pereira RW, Wang K. A review of computational tools in microRNA discovery. Front Genet 2013;4:81.
57. Saçar Demirci MD, Baumbach J, Allmer J. On the performance of pre-microRNA detection algorithms. Nat Commun 2017;8:330.
58. Lopes Ide O, Schliep A, de Carvalho AC. The discriminant power of RNA features for pre-miRNA recognition. BMC Bioinformatics 2014;15:124.
59. Guo L, Lu Z. The fate of miRNA strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 2010; 5:e11387.
60. Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene gxpression: An overview of nuclear functions. Int J Mol Sci 2016;17:1712.
61. Akbari Moqadam F, Pieters R, den Boer ML. The hunting of targets: challenge in miRNA research. Leukemia 2013;27:16-23.
62. Fan X, Kurgan L. Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinform 2015;16:780-794.
63. Kumar A, Yu F-SX. Toll-Like Receptors and Corneal Innate Immunity. Curr Mol Medi 2006;6:327-337.
64. Chen CJ, Ou YC, Li JR, Chang CY, Pan HC, Lai CY, Liao SL, Raung SL, Chang CJ. Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol 2014;88:1150-1161.
65. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 1999;155:1915-1927.
66. Lasky JL, Wu H. Notch signaling, brain development, and human disease. Pediatr Res 2005; 57(5 Pt 2):104R-109R.
67. Higuchi M, Kiyama H, Hayakawa T, Hamada Y, Tsujimoto Y. Differential expression of Notch1 and Notch2 in developing and adult mouse brain. Brain Res Mol Brain Res 1995; 29:263-272.
68. Sato K, Kimura M, Sugiyama K, Nishikawa M, Okano Y, Nagaoka H, Nagase T, Kitade Y, Ueda H. Four-and-a-half LIM domains 1 (FHL1) protein interacts with the Rho guanine nucleotide exchange factor PLEKHG2/FLJ00018 and regulates cell morphogenesis. J Biol Chem 2016;291:25227-25238.
69. Zhang B-Q, Si N, Liu D-F. Identification of a novel four and a half LIM domain 1 mutation in a Chinese male presented with hypertrophic cardiomyopathy and mild skeletal muscle hypertrophy. Chin Med J (Engl) 2015;128:2269-2270.
70. Gecz J, Barnett S, Liu J, Hollway G, Donnelly A, Eyre H, Eshkevari HS, Baltazar R, Grunn A, Nagaraja R, Gilliam C, Peltonen L, Sutherland GR, Baron M, Mulley JC. Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 1999;62:356-368.
71. Baranzini SE, Laxer K, Bollen A, Oksenberg JR. Gene expression analysis reveals altered brain transcription of glutamate receptors and inflammatory genes in a patient with chronic focal (Rasmussen's) encephalitis. J Neuroimmunol 2002;128:9-15.
72. Liu Q, Stone JA, Bradel-Tretheway B, Dabundo J, Benavides Montano JA, Santos-Montanez J, Biering SB, Nicola AV, Iorio RM, Lu X, Aguilar HC. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLoS Pathog. 2013;9:e1003770.
73. Smith EC, Popa A, Chang A, Masante C, Dutch RE. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J 2009;276:7217-7227.
74. Swanson PA, McGavern DB. Viral Diseases of the Central Nervous System. Curr Opin Virol 2015;11:44-54.
75. Foo CH, Rootes CL, Cowley K, Marsh GA, Gould CM, Deffrasnes C, Cowled CJ, Klein R, Riddell SJ, Middleton D, Simpson KJ, Wang LF, Bean AG, Stewart CR. Dual microRNA screens reveal that the immune-responsive miR-181 promotes henipavirus entry and cell-cell fusion. PLoS Pathog 2016;12:e1005974.
76. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T. Identification of microRNAs of the herpesvirus family. Nat Methods 2005;2:269-276.
77. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O. Host immune system gene targeting by a viral miRNA. Science 2007;317:376-381.
78. Peng X, Li Y, Walters KA, Rosenzweig ER, Lederer SL, Aicher LD, Proll S, Katze MG. Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 2009;10:373.