Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor

Document Type: Original article

Authors

Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran

Abstract

Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Triticum turgidum L.) and called TaERF6. Its cDNA was synthesized, sequenced and compared with genomic sequence to figure out intron and exon regions and determine coding sequence region. The length of TdERF1 gene was 1939 bp and cDNA was 1065 bp including two exons, the first one 259 bp and the second one 806 bp separated by a 874 bp intron with a 111 bp 5'-UTR (untranslated region) and 401 bp 3'-UTR. TaERF6 encodes a 353 amino acids protein with nearly 99% identity to TdERF1. Hydrophobic cluster analysis revealed an N-terminal hydrophobic domain contains a highly conserved motif with the consensus sequence of M [C/L/Y] [G/R] [G/R/P] [A/G/V/L/R] [I/L/R/S/P/Q] [L/I/R/H] and hydrophobic clusters in AP2/ERF domain of which tends to form b-sheet. Three monopartite nuclear localization signals also identified in TaERF6 that play important role in getting back into the nucleus. The results showed several putative phosphorylation sites in TaERF6 that a motif from residues 246 to 266, the CMVII-4 motif, was predicted to phosphorylate by different kinase proteins and play important roles in TaERF6 function. Phylogenetic analysis showed 7 clusters (I to VII) and 10 subclusters according to their relatedness in Poaceae family.

Keywords


1. Sahhafi SR, Assad MT, Masumi M, Razi H, Alemzadeh A. Influence of WSMV infection on biochemical changes in two bread wheat cultivars and in their F2 population. J Agr Sci Tech 2012;14:399-405.

2. Etesami H, Jeong BR. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environl Saf 2018;147:881-896.

3. Rastgoo L, Alemzadeh A. Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 2011;5:375-383. 

4. Zakipour Z, Alemzadeh A. Expression analysis of a gene encoding a NADP-malic enzyme in common wheat and its relation. Plant Cell Biotechnol Mol Biol 2016;17:39-48.

5. Zinati Z, Alemzadeh A, Kayvanjoo AH. Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis. Physiol Mol Biol Plants 2016;22:163-174.

6. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic responses. Biochim Biophy Acta gene Regul Mech 2012;1819:86-96.

7. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 2002;3:998-1009.

8. Ashrafi-Dehkordi E, Alemzade A, Tanaka N, Razi H. Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ 2018;6:e4631

9. den Broeck LV, Dubois M, Vermeersch M, Storme V, Matsui M, Inzé D. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Mol Syst Biol 2017;13:961.

10. Wu D, Ji J, Wang G, Guan C, Jin C. LchERF, a novel ethylene-responsive transcription factor from Lycium Chinese, confers salt tolerance in transgenic tobacco. Plant Cell Rep 2014;33:2033-2045.

11. Sami Z, Alemzadeh A. Isolation and molecular characterization of a novel Na+/H+ antiporter gene, AlNHX2, from  Aeluropus littoralis and comparison of AlNHX1 and AlNHX2. Plant Omics 2016;9:205-212.

12. Kumar RR, Goswami S, Singh K, Dubey K, Rai GK, Singh B, Singh S, Grover M, Mishra D, Kumar S, Bakshi S, Pathak H, Chinnusamy V, Praveen S. Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs)-A key member of heat stress-tolerance network of wheat. J Biotechnol 2018;279:1-12.

13. Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999;294:1351-1362.

14. Azad, I, Alemzadeh A. Bioinformatic and empirical analysis of a gene encoding serine/ threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars. Mol Biol Res Commun 2017;6:65-75.

15. Tazangi SE, Alemzadeh A, Tale AM, Jam M. Expression pattern of ALNHA1 in Aeluropus littoralis under heavy metals stress. Plant Cell Biotechnol Mol Biol 2015;16:145-154.

16. Rastgoo L, Alemzadeh A, Afsharifar A Isolation of two novel isoforms encoding zinc- and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics 2011;4: 377-383.

17. Sarmadi L, Alemzadeh A, Ghareyazie B. PCR-based detection of genetically modified soybean at a grain receiving port in Iran.J Agr Sci Tech 2016;18:805-815.

18. Xu Y, Liu Z, Gao X, Jin C, Wen L, Yao X, Ren J. SPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS One 2010;5:e11290.

19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-2729.

20. Makhloufi E, Yousfi FE, Marande W, Mila I, Hanana M, Bergés H, Bouzayen M. Isolation and characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum aestivum L. subsp. durum), potentially involved in salt-stress responses. J Exp Bot 2014;65: 6359-6371.

21. Fukuhara T, Pak JY, Ohwaki Y, Tsujimura H, Nitta T. Tissue-specific expression of the gene for a putative plasma membrane H+-ATPase in a seagrass. Plant Physiol 1996;110:35-42.

22. Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 1997;53:621-645.

23. Lemesle-Varloot L, Henrissat B, Gaboriaud C, Bissery V, Morgat A, Mornan JP. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 1990;72:555-574.

24. Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 2007;65: 719-732.

25. Mallmann RT, Wilmes T, Lichvarova L, Bührer A, Lohmüller B, Castonguay J, Lacinova L, Klugbauer N. Tetraspanin-13 modulates voltage-gated Cav2.2 Ca2+ channels. Sci Rep 2013;3:1777.

26. Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ. Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation. Plant Mol Biol 2005;58:543-559.

27. Cokol M, Nair R, Rost B. Finding Nuclear localization signals. EMBO Rep 2000;1:411-415.

28. Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H. Six classes of nuclear localization signals specific to different bonding grooves of importin a. J Biol Chem 2009;284:478-485.

29. Lange A, Mills RE, Lange C, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function and interaction with importin a. J Biol Chem 2007; 282:5101-5105.

30. Kapiloff MS, Farkash Y, Rosenfeld MG Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science 1991;253:786-789.

31. Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 2013;25:1126-1142.

32. Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 2006;140:411-432.

33. Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 1996; 274:1900-1902.

34. Tuteja N. Mechanisms of high salinity tolerance in plants. Methods in Enzymol 2007;428: 419-438.

35. Moustafa K, AbuQamar S, Jaffar M, Al-Rajab AJ, Trémouillaux-Guiller J. MaPK cascades and major abiotic stresses. Plant Cell Rep 2014;33:1217-1225.

36. de Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet 2011;12:833-845.

37. Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 2000;25:257-260.

38. Xu ZS, Chen M, Li LC, Ma YZ. Functions of the ERF transcription factor in plants. Botany 2008;86:969-977.

39. Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latche A, Pech JC, Bouzayen M. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS letters. 2003;550:149-154.

40. Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Bio Chem 1998;379:633-646.

41. Orzáez M, Salgado J, Giménez-Giner A, Pérez-Payá E, Mingarro I. Influence of proline residues in transmembrane helix packing. J Mol Biol 2004;335:631-640. 

42. Chen R, Kim O, Yang J, Sato K, Eisenmann KM, McCarthy J, Chen H, Qiu Y. Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 2001;276:31858-31862.