Studying the effects of several heat-inactivated bacteria on colon and breast cancer cells

Document Type: Original article

Authors

Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran

Abstract

A great number of researches over the last years are allocated to know cancer reasons, prevention and treatment strategies. Bacterial infections are one of the promoting factors in cancer development. The present study was carried out to study effects of heat-killed bacteria on cancer cell lines MCF7 and HT-29. To this purpose, four bacterial strains including Salmonella typhi, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa were assayed. Thermal inactivation method was used to kill the bacteria and preserve the bacterial surface proteins unchangeable. The concentrations of 0.01, 0.1, 0.5 and 1 mg/ml of inactivated bacteria were prepared to evaluate the effects of heat-inactivated bacterial solutions on MCF7 and HT-29 cell lines. MTT assay was used to measure the cell viability of cancer cells treated with different concentration of inactivated bacterial solutions.The MTT assay results after 48 hours showed that the heat-killed bacterial solutions were able to induce the proliferation of both cancer cell lines. In addition, the most cell viability in MCF-7 cell line was seen in samples treated with S. epidermidis, while in HT29 cells, the most one was seen in S. typhi treated samples. It was concluded that bacterial infections are cancer-deteriorating agents, and any species of bacteria is specific to certain cancerous tissue.

Keywords


1. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366-374.

2. Irigaray  P, Newby  JA, Clapp  R, Hardell  L, Howard V, Montagnier L, Epstein S, Belpomme D. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed Pharmacother 2007;61:640-658.

3. Hausen Hz. Papillomaviruses Causing Cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000;92:690-698.

4. Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology 2009;136:1863-1873.

5. Polk DB, Peek RM. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010;10:403-414.

6. Faguet GB. A brief history of cancer: age‐old milestones underlying our current knowledge database. Int J Cancer 2015;136:2022-2036.

7. Le Bars P, Matamoros S, Montassier E, Le Vacon F, Potel G, Soueidan A, Jordana F, de La Cochetière MF. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Canadian journal of microbiology 2017;63:475-492.

8. Biarc J, Nguyen IS, Pini A, Gosse F, Richert S, Thierse D, Van Dorsselaer A, Leize-Wagner E, Raul F, Klein JP, Schöller-Guinard M. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S.bovis). Carcinogenesis 2004;25:1477-1484.

9. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg 2004;139:760-765.

10. Zarkin BA, Lillemoe KD, Cameron JL, Effron PN, Magnuson TH, Pitt HA. The triad of Streptococcus bovis bacteremia, colonic pathology, and liver disease. Ann Surg 1990;211:786-791; discussion 791-782.

11. Jackson LA, Wang SP, Nazar-Stewart V, Grayston JT, Vaughan TL. Association of Chlamydia pneumoniae immunoglobulin A seropositivity and risk of lung cancer. Cancer Epidem Biomar 2000;9:1263-1266.

12. Zhan P, Suo LJ, Qian Q, Shen XK, Qiu LX, Yu LK, Song Y. Chlamydia pneumoniae infection and lung cancer risk: a meta-analysis. Eur J Cancer 2011;47:742-747.

13. Kocazeybek B. Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case–control study. J Med Microbiol 2003;52:721-726.

14. Koyi H, Brandén E, Gnarpe J, Gnarpe H, Steen B. An association between chronic infection with Chlamydia pneumoniae and lung cancer. A prospective 2‐year study. Apmis 2001;109:572-580.

15. Chanudet E, Adam P, Nicholson AG, Wotherspoon AC, Ranaldi R, Goteri  G,

Pileri  SA, Ye H, Müller-Hermelink HK, Du MQ. Chlamydiae and Mycoplasma infections in pulmonary MALT lymphoma. Brit J Cancer 2007;97:949-951.

16. Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl med.2006;4:14.

17. Cummins J, Tangney M. Bacteria and tumours: causative agents or opportunistic inhabitants? Infect Agent Cancer 2013;8:11.

18. Lax AJ, Thomas W. How bacteria could cause cancer: one step at a time. Trends Microbiol 2002;10:293-299.

19. Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749-759.

20. Travaglione S, Fabbri A, Fiorentini C. The Rho-activating CNF1 toxin from pathogenic E. coli: A risk factor for human cancer development? Infect Agents Cancer 2008;3:4.

21. Nath G, Gulati AK, Shukla VK. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World  J Gastroenterology:2010;16:5395-5404.

22. Liu BY, Zhang GM, Li XL, Chen H. Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy. Scanning 2012;34:6-11.

23. Smelt JP, Brul S. Thermal inactivation of microorganisms. Cric Rev Food Sci Nutr.2014;54:1371-1385.

24. Piyasena P, Mohareb E, McKellar RC. Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 2003;87:207-216.

25. Rose LJ, O'Connell H. UV light inactivation of bacterial biothreat agents. Appl Environ Microbiol 2009;75:2987-2990.

26. Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380‐480 nm Violet‐blue Light. Photochem Photobiol 2018;94:445-458.

27. Chao Y, Zhang T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 2011;92:381-392.

28. Coleman WH, Chen D, Li YQ, Cowan AE, Setlow P. How moist heat kills spores of Bacillus subtilis. J Bacteriol 2007;189:8458-8466.

29. Zhang P, Kong L, Setlow P, Li YQ. Characterization of wet-heat inactivation of single spores of Bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Appl Environ Microbiol 2010;76:1796-1805.

30. Setlow B, Setlow P. Heat killing of Bacillus subtilis spores in water is not due to oxidative damage. Appl Environ Microbiol 1998;64:4109-4112.

31. Lu Z-X, Zhang Z-L, Shi W-L, Pang D-W, Xie Z-X, Sheng P. Heat-fixation method used in an atomic force microscopy study of cell morphology. Anal Sci 2008;24:257-260.

32. Glover T. Progress in Cancer Research. Canada Lancet and Practitioner 1926;67.

33. Livingston W-C. Neoplastic Infections of Man and Animals. J Am Med Womens Asso. 1953;9:7-12.

34. Morrissey D, O'Sullivan GC, Tangney M. Tumour targeting with systemically administered bacteria. Curr Gene Ther 2010;10:3-14.

35. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP,Schwartzentruber DJ, herry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L,Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. Phase I study of the intravenous administration of attenuatedSalmonella typhimurium to patients with metastatic melanoma. Jpn J Clin Oncol 2002;20:142-152.

36. Apostolou P, Tsantsaridou A, Papasotiriou I, Toloudi M, Chatziioannou M, Giamouzis G. Bacterial and fungal microflora in surgically removed lung cancer samples. J Cardiothorac Surg 2011;6:137.

37. Cummins J, Tangney M. Bacteria and tumours: causative agents or opportunistic inhabitants? Infect Agents Cancer 2013;8:11.

38. Wei MQ, Ellem KA, Dunn P, West MJ, Bai CX, Vogelstein B. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur J Cancer 2007;43:490-496.

39. Baban CK, Cronin M, O’Hanlon D, O’Sullivan GC, Tangney M. Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 2010;1:385-394.

40. Sznol M, Lin SL, Bermudes D, Zheng L-m, King I. Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 2000;105:1027.

41. Rogers MB. Mycoplasma and cancer: in search of the link. Oncotarget 2011;2:271.

42. Nath G, Singh H, Shukla V. Chronic typhoid carriage and carcinoma of the gallbladder. Eur J Cancer 1997;6:557-559.

43. De Martel C, Plummer M, Parsonnet J, Van Doorn L, Franceschi S. Helicobacter species in cancers of the gallbladder and extrahepatic biliary tract. Brit J Cancer 2009;100:194-199.

44. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S,Yamakido M, Taniyama K,Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001;345:784-789.

45. Hong SN, Lee SM, Kim JH, Lee TY, Kim JH, Choe WH, Lee SY, Cheon YK, Sung IK, Park HS, Shim CS. Helicobacter pylori infection increases the risk of colorectal adenomas: cross-sectional study and meta-analysis. Dig Dis Sci 2012;57:2184-2194.

46. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microb 2016;82:5039-5048.

47. Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, Scott L, O'Hanlon DM, Burton JP, Francis KP, Tangney M, Reid G. Microbiota of human breast tissue. Appl Environ Microbiol 2014;80:3007-3014.

48. Cantwell AR, Kelso DW. Microbial findings in cancers of the breast and in their metastases to the skin. J Dermatol Surg Oncol 1981;7:483-491.

49. Chandrasekaran E, Xue J, Neelamegham S, Matta KL. The pattern of glycosyl-and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohyd Res 2006;341:983-994.

50. Wang CZ, Kazmierczak RA, Eisenstark A. Strains, mechanism, and perspective: Salmonella-Based Cancer Therapy. Int J Microbiol 2016;2016.