Genetic diversity analysis and population structure of some Iranian Fenugreek (Trigonella foenum-graecum L.) landraces using SRAP Markers

Document Type: Original article


Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran


Fenugreek is one of the important edible and medicinal vegetables that have a long history of cultivation and consumption. Characterize the extent of the genetic diversity among landraces will provide a good context for future breeding programs and genetic resource preservation. Genetic diversity and population structure of 88 individuals of eight landraces of Iranian fenugreek evaluated based on SRAP markers. Seventy-two bands generated from 6 primers in which 56 (80.11%) band were polymorph. Hamadan landrace showed the lowest values of percentage of polymorphic loci (67.86), Nei's gene diversity index (0.24), number of effective alleles (1.40) and Shannon’s Information index (0.36). Nei’s genetic distance matrix revealed the highest genetic distance between Hamadan and Yazd (0.203) and the highest genetic similarity between Mahallat and Varamin (0.036) landraces. The most gene flow was between Mahallat and Varamin landraces (Nm=8.36) and the least was between Shiraz and Hamadan landraces (Nm=0.66). An extent admixture of alleles between the Iranian fenugreek landraces was observed by the population structure. Mantel test indicated that the genetic differentiation and gene flow is not associated with geographic distance in Iranian fenugreek landraces. Our observations indicated SRAP is an efficient technique to reveal genetic diversity and population structure of Iranian fenugreek landrace.


1. Aminkar S, Shojaeiyan A, Ayyari M. Enhancement of diosgenin extraction from fenugreek (Trigonella foenum-graecum) with a new ionic liquid-based assisted method. Planta Med 2016;82:S1-S381.

2. Culley TM, Wallace LE, Gengler-Nowak KM,  Crawford DJ. A comparison of two methods of calculating GST, a genetic measure of population differentiation. Am J Bot 2002;89:460-465.

3. Ahmad A, Alghamdi SS, Mahmood K, Afzal M. Fenugreek a multipurpose crop: Potentialities and improvements. Saudi J Biol Sci 2016;23:300-310.

4. Hajimehdipoor H, Sadat-Ebrahimi S, Amanzadeh Y, Izaddoost M, Givi E. Identification and Quantitative Determination of 4-Hydroxyisoleucine in Trigonella foenum-graecum L. from Iran. J Med Plants 2010;1:29-34.

5. Moradi kor Z, Bayati Zadeh J. Fenugreek (Trigonella foenum-graecum L) as a valuable medicinal plant. Int J Adv Biol Biomed Res 2013;1:922-931.

6. Bano D, Tabassum H, Ahmad A, Mabood A, Ahmad IZ. The medicinal significance of the bioactive compounds of Trigonella foenum-graecum: a review. Int J Res Ayurveda Pharm 2016;7:84-91.

7. Khorshidian N, Yousefi Asli M, Arab M, Adeli Mirzaie A, Mortazavian AM. Fenugreek: potential applications as a functional food and nutraceutical. Food Nutr Res 2016;3:5-16.

8. Mehrafarin A, Rezazadeh Sh, Naghdi Badi H, Noormohammadi G, Zand E, Qaderi A. A review on biology, cultivation and biotechnology of fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant and multipurpose. J Med Plants 2011;1:6-24.

9. Srinivasan K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev Int 2006;22:203-224.

10. Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS. Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 2004;4:13.

11. Al-Maamari IT, Al-Sadi AM, Al-Saady NA. Assessment of genetic diversity in fenugreek (Trigonella foenum-graecum) in Oman. Int J Agric Biol 2014;16:813-818.

12. Basu SK, Acharya SN, Thomas JE. Genetic improvement of fenugreek (Trigonella foenum-graecum L.) through EMS induced mutation breeding for higher seed yield under western Canada prairie conditions. Euphytica 2008;160:249-258.

13. Marzougui N, Boubaya A, Elfalleh W, Guasmi F, Laaraiedh L, Ferchichi A, Triki T, Beji M. Assessment of genetic diversity in Trigonella foenum-graecum Tunisian cultivars using ISSR markers. J Food Agric Environ 2009;7:101-105.

14. Sindhu A, Tehlan SK, Chaudhury A. Analysis of genetic diversity among medicinal therapist Trigonella foenum-graecum L. genotypes through RAPD and SSR markers. Acta Physiol Plant 2017;39.

15. Sadeghzade Ahari D, Hassandokht M, Kashi A, Amri A. Evaluation of genetic diversity in Iranian fenugreek (Trigonella foenum-graecum L.) landraces using AFLP markers. Seed Sci Technol Improv J 2014;30:155-171. [In Persian]

16. Sundaram S, Purwar S. Assessment of genetic diversity among fenugreek (Trigonella foenum-graecum L.), using RAPD molecular markers. J Med Plant Res 2011;5:1543-1548.

17. Kakani RK, Singh SK, Pancholy A, Meena RS, Pathak R, Raturi A. Assessment of genetic diversity in Trigonella foenum-graecum based on nuclear ribosomal DNA, internal transcribed spacer and RAPD analysis. Plant Mol Biol Rep 2011;29:315-323.

18. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 2001;103:455-461.

19. Robarts DW, Wolfe AD. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology. Appl Plant Sci 2014;2:1400017.

20. Liu J, Wang ZR, Li C, Bian YB, Xiao Y. Evaluating genetic diversity and constructing core collections of Chinese Lentinula edodes cultivars using ISSR and SRAP markers. J Basic Microbiol 2015;55:749-760.

21. Zheng Y, Xu S, Liu J, Zhao Y, Liu J. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PLoS One 2017;12:e0177508.

22. Solmaz I, Kaçar Y, Sari N, Şİmşek Ö. Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turk J Agric Fores 2016;40:407-419.

23. Guenni K, Aouadi M, Chatti K, Salhi-Hannachi A. Analysis of genetic diversity of Tunisian pistachio (Pistacia vera L.) using sequence-related amplified polymorphism (SRAP) markers. Genet Mol Res 2016;15.

24. Jia S, Yan Z, Wang Y, Wei Y, Xie Z, Zhang F. Genetic diversity and relatedness among ornamental purslane (Portulaca L.) accessions unraveled by SRAP markers. 3 Biotech 2017;7:241.

25. Golkar P, Nourbakhsh V. Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Ind Crop Prod 2019;130:170-178.

26. Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 1991;19:1349.

27. Bassam BJ, Caetano-Anollés G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 1991;196:80-83.

28. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21:2128-2129.

29. Rambaut A. FigTree v1. 4.3. Molecular Evolution, Phylogenetics and Epidemiology. 2016. Available from: Accessed 10 Jan 2018.

30. Maleki M, Shojaeiyan A, Monfared SR. Population structure, morphological and genetic diversity within and among melon (Cucumis melo L.) landraces in Iran. Genet Eng Biotechnol J 2018;16:599-606.

31. Grativol C, da Fonseca Lira-Medeiros C, Hemerly AS, Ferreira PCG. High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol Biol Rep 2011;38:4245-4256.

32. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006;6:288-295.

33. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978;89:583-590.

34. Wood AR, Gardner JP. Small spatial scale population genetic structure in two limpet species endemic to the Kermadec Islands, New Zealand. Mar Ecol Prog Ser 2007;349:159-170.

35. Taşcıoğlu T, Sadıkoğlu N, Doğanlar S, Frary A. Molecular genetic diversity in the Origanum genus: EST-SSR and SRAP marker analyses of the 22 species in eight sections that naturally occur in Turkey. Ind Crop Prod 2018;123:746-761.

36. Frankham R, Briscoe DA, Ballou JD. Introduction to conservation genetics. 2002: Cambridge University Press.

37. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 2009;9:1322-1332.

39. Choupani A, Shojaeiyan A, Maleki M. Genetic relationships of Iranian endemic mint species, Mentha mozaffariani Jamzad and some other mint species revealed by ISSR markers. BioTechnologia 2019;100:19-28.

40. Wang W, Chen L, Yang P, Hou L, He C, Gu Z, Liu Z. Assessing genetic diversity of populations of topmouth culter (Culter alburnus) in China using AFLP markers. Biochem Syst Ecol 2007;35:662-669.

41. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012;4:359-361.

42. Fan X, Jiang J, Zhang Y, Sun H, Jiao J, Liu C. Genetic diversity assessment of Vitis ficifolia Bge. populations from Henan province of China by SRAP markers. Biotechnol Biotechnol Equip 2015;29:15-20.

43. Sheidai M, Riazifar M, Hoordadian A, Alishah O. Genetic finger printing of salt-and drought-tolerant cotton cultivars (Gossypium hirsutum) by IRAP-REMAP and SRAP molecular markers. Plant Gene 2018;14:12-19.