Genomic analysis of Enterococcus durans NT21, a putative bacteriocin-producing isolate

Document Type : Original article

Authors

1 Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Egypt

2 Basic Science Department, Faculty of Oral and Dental medicine, Nahda University Beni-Suef (NUB), Beni

3 Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University

4 Department of Biology, University of Regina, Saskatchewan, Canada

5 Department of Botany and Microbiology, Faculty of Science, Helwan University, Egypt

Abstract

Enterococcus species are a long-standing and non-pathogenic commensal bacterium, representing an important part of the normal. Enterococcus durans is a rarely isolated species from animals and humans, and it was a tiny constituent of human oral cavity and animal intestinal flora, as well as animal-derived foods, particularly dairy products. This study evaluated the security of our strain E. durans NT21 by using whole-genome sequencing (WGS), physicochemical features, and antimicrobial activity. The complete genomic of our strain Enterococcus durans NT21was sequenced and analyzed by using several bioinformatics tools to identify bacteriocin genes, virulence genes, antibiotic resistance genes, Crispr-Cas and pathogenicity islands. The results showed that our strain NT21 lacks the presence of virulence genes, pathogenicity islands, plasmids and has only two antibiotic resistance genes. On the other hand, it produces three bacteriocin-like inhibitory substances (Enterolysin A, P and L50a). It has six gene-encoded Crisper-Cas and one cluster Crispr-Cas gene. According to our findings, E. durans NT21 is a possible probiotic strain that is safe for both human and animal use.

Keywords


  1. Kılıç EE, Halil Kılıç İ, Koç B. Yoghurt production potential of lactic acid bacteria isolated from leguminous seeds and effects of encapsulated lactic acid bacteria on bacterial viability and physicochemical and sensory properties of yoghurt. J Chem 2022;2022:2683126.
  2. Růžičková M, Vítězová M, Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med 2020;15:211-224.
  3. Zommiti M, Chevalier S, Feuilloley MGJ, Connil N. Special Issue "Enterococci for Probiotic Use: Safety and Risk": Editorial. Microorganisms 2022;10:604.
  4. Mao Q, Sun X, Sun J, Zhang F, Lv A, Hu X, Guo Y. A candidate probiotic strain of Enterococcus faecium from the intestine of the crucian carp Carassius auratus. AMB Express 2020;10:40.
  5. Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: between probiotic potential and safety concerns-An update. Front Microbiol 2018;9:1791.
  6. Ben Braïek O, Smaoui S. Enterococci: Between emerging pathogens and potential probiotics. Biomed Res Int 2019;2019:5938210.
  7. Fugaban JII, Holzapfel WH, Todorov SD. Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. Curr Res Micro Sci 2021;2:100070.
  8. Ma N, Ma X. Dietary amino acids and the gut‐microbiome‐immune axis: physiological metabolism and therapeutic prospects. Compr Rev Food Sci Food Saf 2019;18:221-42.
  9. Comerlato CB, Prichula J, Siqueira FM, Ritter AC, Varela APM, Mayer FQ, Brandelli A. Genomic analysis of Enterococcus durans LAB18S, a potential probiotic strain isolated from cheese. Genet Mol Biol 2022;45:e20210201.
  10. Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M, Fedoseeva M, Ohnmacht C, Dehmel S, Nathan P, Bartel S, Eickelberg O, Schloter M, Hartmann A, Schmitt-Kopplin P, Krauss-Etschmann S. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol 2017;139:1525-1535.
  11. Hussein WE, Abdelhamid AG, Rocha-Mendoza D, García-Cano I, Yousef AE. Assessment of safety and probiotic traits of Enterococcus durans OSY-EGY, isolated from Egyptian artisanal cheese, using comparative genomics and phenotypic analyses. Front Microbiol 2020;11:608314.
  12. Zhou Y, Shi L, Wang J, Yuan J, Liu J, Liu L, Da R, Cheng Y, Han B. Probiotic potential analysis and safety evaluation of Enterococcus durans A8-1 isolated from a healthy Chinese infant. Front Microbiol 2021;12:799173.
  13. Li P, Gu Q, Wang Y, Yu Y, Yang L, Chen JV. Novel vitamin B12-producing Enterococcus spp. and preliminary in vitro evaluation of probiotic potentials. Appl Microbiol Biotechnol 2017;101:6155-6164.
  14. Morosini M, Loza E, Gutiérrez O, Almaraz F, Baquero F, Canton R. Evaluation of 4 swab transport systems for the recovery of ATCC and clinical strains with characterized resistance mechanisms. Diagn Microbiol Infect Dis 2006;56:19-24.
  15. Chingwaru W, Mpuchane S, Gashe B. Enterococcus faecalis and Enterococcus faecium isolates from milk, beef, and chicken and their antibiotic resistance. J Food Prot 2003;66: 931-936.
  16. Ahmad MS, El-Gendy AO, Ahmed RR, Hassan HM, El-Kabbany HM, Merdash AG. Exploring the antimicrobial and antitumor potentials of streptomyces sp. AGM12-1 isolated from Egyptian soil. Front Microbiol 2017;8:438.
  17. Choeisoongnern T, Sivamaruthi BS, Sirilun S, Peerajan S, Choiset Y, Rabesona H, Haertlé T, Chaiyasut C. Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. Food Sci Technol 2019;40:571-579.
  18. Abanoz HS, Kunduhoglu B. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Korean J Food Sci Anim Resour 2018;38:1064-1079.
  19. Choeisoongnern T, Sirilun S, Waditee-Sirisattha R, Pintha K, Peerajan S, Chaiyasut C. Potential probiotic Enterococcus faecium OV3-6 and its bioactive peptide as alternative bio-preservation. Foods 2021;10:2264.
  20. Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 1995;61:2643-2648.
  21. Chou LS, Weimer B. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 1999;82:23-31.
  22. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol 2003;69:1589-1597.
  23. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461-2470.
  24. Carpin S, Crèvecoeur M, Greppin H, Penel C. Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol 1999;120:799-810.
  25. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J. Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2011;62:716-721.
  26. Zhong Z, Zhang W, Song Y, Liu W, Xu H, Xi X, Menghe B, Zhang H, Sun Z. Comparative genomic analysis of the genus Enterococcus. Microbiol Res 2017;196:95-105.
  27. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014;42:D581-D591.
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014;42:D206-D214.
  29. Lindsey RL, Pouseele H, Chen JC, Strockbine NA, Carleton HA. Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States. Front Microbiol 2016;7:766.
  30. Olvera-García M, Sanchez-Flores A, Quirasco Baruch M. Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 2018;102:2251-2267.
  31. Yoon SH, Park YK, Kim JF. PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Res 2015;43:D624-D630.
  32. Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 2012;13:202.
  33. Van Heel AJ, De Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018;46:W278-W281.
  34. Comerlato C, Prichula J, Siqueira F, Ritter A, Varela AP, Mayer F, Brandelli A. Genomic analysis of Enterococcus durans LAB18S, a potential probiotic strain isolated from cheese. Genet Mol Biol 2022;45:e20210201.
  35. Lim KB, Balolong MP, Kim SH, Oh JK, Lee JY, Kang D-K. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7. BioMed Res Int 2016;2016:8521476.
  36. Amarantini C, Prakasita VC, Cahyani LE. The Effect of Temperatures and pH on Bacteriocin Activity of Lactic Acid Bacteria Strain Pr 4.3 L From Peda Fish. 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020): Atlantis Press;2021.p.28-34.
  37. Leslie VA, Alarjani KM, Malaisamy A, Balasubramanian B, Balasubramanian B. Bacteriocin producing microbes with bactericidal activity against multidrug resistant pathogens. J Infect Public Health 2021;14:1802-1809.
  38. Wang Y, Qin Y, Xie Q, Zhang Y, Hu J, Li P. Purification and Characterization of Plantaricin LPL-1, a Novel Class IIa Bacteriocin Produced by Lactobacillus plantarum LPL-1 Isolated From Fermented Fish. Front Microbiol 2018;9:2276.
  39. Xi Q, Wang J, Du R, Zhao F, Han y, Zhou Z. Purification and Characterization of Bacteriocin Produced by a Strain of Enterococcus faecalis TG2. Appl Biochem Biotechnol 2018;184:1-14.
  40. Bindiya ES, Tina KJ, Sasidharan RS, Bhat SG. BaCf3: highly thermostable bacteriocin from Bacillus amyloliquefaciens BTSS3 antagonistic on food-borne pathogens. 3 Biotech 2019; 9: 136.
  41. Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Enterococcus spp. as a producer and target of bacteriocins: A double-edged sword in the antimicrobial resistance crisis context. Antibiotics 2021;10:1215.
  42. Vimont A, Fernandez B, Hammami R, Ababsa A, Daba H, Fliss I. Bacteriocin-producing Enterococcus faecium LCW 44: A high potential probiotic Candidate from raw camel milk. Front Microbiol 2017;8:865.
  43. Dündar H. Bacteriocinogenic potential of Enterococcus faecium isolated from wine. Probiotics Antimicrob Proteins 2016;8:150-160.
  44. Herranz Sorribes C. Caracterización bioquímica y genética de enterocinas producidas por cepas de" Enterococcus faecium" de origen cárnico: optimización de la producción molecular de acción de la enterocina P de" Enterococcus faecium" P13. Ene 2018;9:11.
  45. Kim YB, Seo KW, Shim JB, Son Sh, Noh EB, Lee YJ. Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. Poult Sci 2019;98:5892-5899.
  46. Smith CA, Bhattacharya M, Toth M, Stewart NK, Vakulenko SB. Aminoglycoside resistance profile and structural architecture of the aminoglycoside acetyltransferase AAC (6')-Im. Microb Cell 2017;4:402-410.
  47. Huescas CGY, Pereira RI, Prichula J, Azevedo PA, Frazzon J, Frazzon APG. Frequency of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in non-clinical Enterococcus faecalis and Enterococcus faecium strains. Braz J Biol 2019;79:460-465.
  48. Dos Santos BA, de Oliveira JDS, Parmanhani-da-Silva BM, Ribeiro RL, Teixeira LM, Neves FPG. CRISPR elements and their association with antimicrobial resistance and virulence genes among vancomycin-resistant and vancomycin-susceptible enterococci recovered from human and food sources. Infect Genet Evol 2020;80:104183.
  49. Tong Z, Du Y, Ling J, Huang L, Ma J. Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms. Exp Ther Med 2017;14: 5491-5496.
  50. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 2018;200:e00580-617.
  51. Lyons C, Raustad N, Bustos MA, Shiaris M. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent. PLoS One 2015;10:e0143544.
  52. Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, Aghazadeh M, Ghotaslou R, Rezaee MA, Yousefi B., Samadi Kafil H. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect Drug Resist 2020;13:1111-1121.
  53. Li B, Zhan M, Evivie SE, Jin D, Zhao L, Chowdhury S, Sarker SK, Huo G, Liu F. Evaluating the safety of potential probiotic Enterococcus durans KLDS6.0930 using whole genome sequencing and oral toxicity study. Front Microbiol 2018;9:1943.