Structural arrangement of the active back-to-back dimer in N-glycosylated ErbB receptors is regulated by heterodimerization

Document Type : Original article

Authors

Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.

Abstract

The human epidermal growth factor receptor (EGFR/ErbB) family consists of four members (ErbB1-4) and belongs to the superfamily of receptor tyrosine kinases (RTKs). The ErbB family members participate in multiple cellular pathways and are the key players in several cancers (brain, breast, lung etc.). Activation of these family members depends on their extracellular domains forming back-to-back hetero/homo dimers. Moreover, dimers are glycosylated, which is a crucial post-translational modification that affects the conformation and function of the protein. Here, molecular modeling and molecular docking are used to comprehensively investigate the dimerization mechanism in glycosylated back-to-back active dimer formation in the entire ErbB receptors for the first time. Results showed that 21 out of 37 clusters of active back-to-back dimers formed by all family members are through heterodimerization. Including; ErbB1-ErbB3/ErbB4, ErbB2-ErbB3/ErbB4 and ErbB3-ErbB4. Ranking ErbB2-ErbB3 as the most stabilized back-to-back dimeric construct. While glycan arrangements favor both homo/hetero dimerization at the dimeric interfaces, it promotes heterodimerization by stabilizing and packing the ligand binding sites of EGFR and ErbB2 respectively. These findings pave the path to future heterodimeric interface/glycan targeting rational anti-cancer drug designs for ErbB receptors.

Keywords


  1. Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2014;79:34-37.
  2. Liu P, Cleveland 4th TE, Bouyain S, Byrne PO, Longo PA, Leahy DJ. A single ligand is sufficient to activate EGFR dimers. Proc Natl Acad Sci U S A 2012;109:10861-10866.
  3. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. The EMBO journal, 2000;19: 3159–3167.
  4. Lu C, Mi LZ, Grey MJ, Zhu J, Graef E, Yokoyama S, Springer TA. Structural evidence for loose linkage between ligand Binding and kinase activation in the epidermal growth factor receptor. Mol Cell Biol 2010;30:5432-5443.
  5. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984;309: 418-425.
  6. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003;421:756-760.
  7. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 1986;319:230-234.
  8. Plowman GD, Whitney GS, Neubauer MG, Green JM, Mcdonald VL, Todaro GJ, Shoyab M. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci USA 1990;87:4905-4909.
  9. Diwanji D, Trenker R, Thaker TM, Wang F, Agard DA, Verba KA, Jura N. Structures of the HER2–HER3–NRG1β complex reveal a dynamic dimer interface. Nature 2021;600:339-343.
  10. Plowman GD, Culouscou JM, Whitney GS, Green JM, Carlton GW, Foy L, Neubauer MG, Shoyab M. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 1993;90:1746-1750.
  11. Yarden Y. The EGFR family and its ligands in human cancer. Signaling mechanisms and therapeutic opportunities. Eur J Cancer 2001;37:S3-S8.
  12. Motamedi Z, Rajabi-Maham H, Azimzadeh Irani M. Glycosylation promotes the cancer regulator EGFR-ErbB2 heterodimer formation - molecular dynamics study. J Mol Model 2021;27:361.
  13. Appert-Collin A, Hubert P, Crémel G, Bennasroune A. Role of ErbB Receptors in Cancer Cell Migration and Invasion. Front Pharmacol 2015;24:283.
  14. Roskoski R. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res 2019;139:395-411.
  15. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127-137.
  16. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017;9:52.
  17. Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and dynamics of the EGF receptor as revealed by experiments and simulations and its relevance to non-small cell lung cancer. Cells 2019;8:316.
  18. Mi LZ, Lu C, Li Z, Nishida N, Walz T, Springer TA. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nat Struct Mol Biol 2011;18:984-989.
  19. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA 2010;107:7692-7697.
  20. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, Gonzalez-Angulo AM, Mills GB, Penuel E, Winslow J, Sperinde J, Sua R, Pidaparthi S, Mukherjee A, Leitzel K, Kostler WJ, Lipton A, Bates M, Arteaga CL. Trastuzumab Has Preferential Activity against Breast Cancers Driven by HER2 Homodimers. Cancer Res 2011;71:1871-1882.
  21. Wang Z. ErbB Receptors and Cancer. Methods Mol Biol 2017;1652:3-35.
  22. Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021;9:719590.
  23. Rahnama S, Azimzadeh Irani M, Amininasab M, Ejtehadi MR. S494 O-glycosylation site on the SARS-CoV-2 RBD affects the virus affinity to ACE2 and its infectivity; a molecular dynamics study. Sci Rep 2021;11:15162.
  24. Azimzadeh Irani M, Ejtehadi MR. GAG positioning on IL-1RI; A mechanism regulated by dual effect of glycosylation. Glycobiology 2019;29:803-812.
  25. Azimzadeh Irani M, Ejtehadi MR. Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response. J Biomol Struct Dyn 2022;40:2575-2585.
  26. Azimzadeh Irani M. Correlation between experimentally indicated and atomistically simulated roles of EGFR N-glycosylation. Mol Simul 2018;44:743-748.
  27. Azimzadeh Irani M, Kannan S, Verma C. Role of N-glycosylation in EGFR ectodomain ligand binding. Proteins 2017;85:1529-1549.
  28. Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 2004;14:103-114.
  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242.
  30. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. ‘SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296-W303.
  31. Honorato RV, Koukos PI, Jimenez-Garcia B, Tsaregorodtsev A, Verlato M, Giachetti A, Rosato A, Bonvin AMJJ. Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front Mol Biosci 2021;8:729513.
  32. Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastriris PL, Karaca E, Melquiond ASJ, Van Dijk M, De Vries SJ, Bonvin AMJJ. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J Mol Biol 2016;428:720-725.
  33. Kirschner KN, Yongye AB, Tshampel SM, Gonzalez-Outeirino J, Daniels C, Foley BL, Woods RJ. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J Comput Chem 2008;29:622-655.
  34. Motamedi Z, Shahsavari M, Rajabi-Maham H, Azimzadeh Irani M. Cancer regulator EGFR-ErbB4 heterodimer is stabilized through glycans at the dimeric interface. J Mol Model 2022;28:399.
  35. Beerli RR, Graus-Porta D, Woods-Cook K, Chen X, Yarden Y, Hynes NE. Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol Cell Biol 1995;15:6496-6505.
  36. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell Mol Life Sci 2008;65:1566-1584.
  37. Moghbeli M, Makhdoumi Y, Soltani Delgosh M, Aarabi A, Dadkhah E, Memar B, Abdollahi A, Abbaszadegan MR. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res 2019;52:2. 
  38. Malik A, Afaq S, Alwabli AS, Al-Ghmady K. Networking of predicted post-translational modification (PTM) sites in human EGFR. Bioinformation 2019;15:448-455.
  39. Sweeney C, Carraway K. Negative regulation of ErbB family receptor tyrosine kinases. Br J Cancer 2004;90:289-293.
  40. Epstein DM, Buck E. Old dog, new tricks: extracellular domain arginine methylation regulates EGFR function. J Clin Invest 2015;125:4320-4322.
  41. Szmida E, KarpiƄski P, Leszczynski P, Sedziak T, Kielan W, Ostasiewicz P, Sasiadek MM. Aberrant methylation of ERBB pathway genes in sporadic colorectal cancer. J Appl Genet 2015;56:185-92.
  42. Duarte HO, Reis CA, Gomes J. Insights on ErbB glycosylation–contributions to precision oncology. Trends Cancer 2022;8:448-455.
  43. Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 2016;35:575-588.
  44. Stein RA, Staros JV. Insights into the evolution of the ErbB receptor family and their ligands from sequence analysis. BMC Evol Biol 2006;6:79.