Original Article

Association between *STAT3* rs1053004 polymorphism and cancer risk: a meta-analysis

Abdolkarim Moazeni-Roodi¹, Mohammad Hashemi^{2,*}

1) Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr, Iran

2) Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

ABSTRACT

Several studies examined the relationship between *STAT3* rs1053004 polymorphism and the risk of some human cancers, but the findings remains inconclusive. To evaluate the impact of *STAT3* rs1053004 on cancer risk, we conducted a meta-analysis of all available studies including 4,605 cancer cases and 5,248 controls. Eligible studies were identified by searching PubMed, Web of Science, Scopus, and Google scholar databases. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated in codominant, dominant, recessive, overdominant, and allele models to quantitatively estimate the association. The overall findings showed no significant association between *STAT3* rs1053004 polymorphism and cancer risk in codominant, dominant, recessive, overdominant, and allele inheritance model tested. In summary, the findings of this meta-analysis indicates no significant association between *STAT3* rs1053004 polymorphism and cancer development. Larger and well-designed studies are necessary to estimate this association in detail.

Keywords: STAT3; Cancer; Meta-analysis; Susceptibility

INTRODUCTION

Cancer, one of the leading cause of morbidity and mortality, is a public health problem worldwide [1]. Approximately 8.2 million cancer-related deaths and 14.1 million new cancer cases occurred in 2012 worldwide [2]. Mounting evidences indicate that multiple factors contribute to the etiology and pathogenesis of cancer [3, 4].

STAT3 is oncogenic downstream mediators of the Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathway [5]. The human *STAT3* gene has been mapped to long arm of chromosome 17 (17q21) [6]. STAT3, a 1128 amino acid protein with a molecular weight of 93 kDa, is involved in regulating cellular differentiation, proliferation, and survival [7]. Phosphorylation of Tyr₇₀₅ by upstream kinases is the key mechanism of activation of STAT3, though residue Ser₇₂₇ can similarly be phosphorylated. Also, unphosphorylated STAT3 is transcriptionally active and its activity is regulated by posttranslational modifications including acetylation, methylation or ubiquitination [8].

*Corresponding Author: Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

Tel: +98-5413235122

E. mail: mhd.hashemi@gmail.com

Open Access

Moazeni-Roodi and Hashemi/Mol Biol Res Commun 2018;7(3):119-124 DOI:10.22099/mbrc.2018.29688.1323 MBRC

STAT3 is a polymorphic gene and several studies have inspected the association between single-nucleotide polymorphisms (SNPs) in the *STAT3* gene and risk of cancer in various populations [9]. The results of a meta-analysis performed by Yan et al [9] indicated that *STAT3* rs12949918 and rs744166 polymorphisms significantly decreased the risk of cancer, but rs2293152, rs4796793, and rs6503695 polymorphisms were not associated with cancer risk. In addition, several studies investigated the impact of rs1053004 polymorphism of *STAT3* on cancer risk [10-16], however the results were controversial. So, for the first time, in this study, we conducted a meta-analysis to evaluate the association between the rs1053004 polymorphism gene and cancer risk.

MATERIALS AND METHODS

Literature search: A comprehensive literature searches in Web of Science, PubMed, Scopus, as well as Google Scholar databases was conducted for all articles regarding the impact of STAT3 rs1053004 polymorphism on cancer risk published up to June 02, 2018. The search term was "cancer or carcinoma or tumor or neoplasms" and "STAT3" and "polymorphism or mutation or variant or rs1053004". Figure 1 summarized the process of identifying eligible studies. Relevant studies included the meta-analysis if they met the following inclusion criteria: 1) Original case-control studies that evaluated the *STAT3* polymorphisms and cancer risk; 2) studies provided necessary information of the genotype frequencies of *STAT3* rs1053004 variant in both cases and controls. The exclusion criteria were: 1) conference abstract, case reports, reviews, duplication data; 2) insufficient genotype information provided.

Data extraction: Data extraction was achieved by authors. The following data were collected from each study such as the first author's name, publication year, country, ethnicity, cancer type, genotyping methods of *STAT3* rs1053004 polymorphism, the sample size, the genotype and allele frequencies of cases and controls (Table 1).

Statistical analysis: All analyses were performed using Revman 5.3 software (Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2014) and *STATA* 14.1 software (Stata Corporation, College Station, TX, USA). The Hardy–Weinberg equilibrium (HWE) were calculated by the chi-square test in control groups, in order to verify the representativeness of the study population. The relationship between rs1053004 polymorphism and cancer risk was estimated by pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Pooled ORs and their 95% CIs for codominant CT *vs* TT and CC *vs* TT), dominant (CT+CC *vs* TT), recessive (CC *vs* CT+TT), overdominant (CT *vs* CC+TT) and the allelic comparison (C *vs* T) genetic inheritance models were calculated. The significance of the pooled OR was assessed by the Z-test, and P<0.05 was considered to be statistically significant. The choice of using fixed or random effects model was determined by the results of the between-study heterogeneity test, which was measured using the Q test and I² statistic. If the test result was I² \geq 50% or P_Q < 0.1, indicating the presence of heterogeneity, the random effect model was selected; otherwise, the fixed-effects model was chosen.

Begg's funnel plot was conducted under all inheritance models to evaluate the publication bias and the asymmetric plots implied potential publication bias. The degree of funnel plot asymmetry was measured using Egger's test; p value less than 0.05 was considered significant publication bias. Sensitivity analysis was conducted to measure the effect by ignoring a single study at a time.

RESULTS

The process of literature retrieval and selection are shown in Figure 1. Totally seven case-

Moazeni-Roodi and Hashemi/Mol Biol Res Commun 2018;7(3):119-124 DOI:10.22099/mbrc.2018.29688.1323 MBRC control studies including 4,605 cancer cases and 5,248 controls which met the inclusion criteria were included in our meta-analyses. The characteristics and relevant data of the included studies are summarized in Table 1.

Figure 1: Flow chart illustrates the detailed study selection process of this meta-analysis

Table 1: Characteristics of the studies eligible for meta-analysis

Autior	Year	Country	Ethnicity	Cancer type	Source of	Method	Case/ costrol	Cases				Con trols		
					control			TT	CT	œ	TT	CT	CC	-
Chathra	2015	Thailand	Asian	HC	HB	TagMan	211/206	55	107	49	77	99	30	0.841
Fatemipour	2017	Iran	Asian	HC	HB	TaqMan	33/50	10	5	18	32	14	4	0.193
Jiang	2011	China	Asian	NSCLC	HB	TaqMan	326/432	148	136	42	173	205	54	0.574
Li	2018	China	Asian	HC	HB	TaqMan	187/169	82	82	23	88	76	5	0.016
Xie	2013	China	Asian	HC	HB	TaqMan	1009/995	411	458	140	453	400	142	0.001
Zhou	2016	China	Asian	GC	HB	TaoMan	1125/1221	445	549	131	432	614	175	0.067
Zhu	2016	China	Asian	PC	HB	TaqMan	1714/2175	759	761	194	874	991	310	0.283

HB, hospital based; HC, hepatocellular carcinoma; GC, gastric cancer; PC, pancreatic cancer; NSCLC, non-small cell lung cancer; HWE, Hardy-Weinberg equilibrium

In the current meta-analysis of 7 eligible studies, the results did not support an association between rs1053004 variant and cancer risk in the overall population in codominant, dominant, recessive, overdominant and allele genetic model (Fig. 2 and Table 2).

Heterogeneity among the studies incorporated in the meta-analysis is shown in Table 2. The findings showed that heterogeneity exist in overall comparisons analysis. The funnel plot is presented in Figure 2. The potential publication bias was evaluated using a Begg's and Egger's tests. The shape of funnel plots and the Begg's and the Egger's tests showed that no publication bias exist in heterozygous codominant, recessive, and overdominant inheritance models (Table 2, Fig. 3).

Table 2: The pooled ORs and 95% CIs for the association between STAT3 rs1053004 polymorphism and cancer susceptibility

Genetic model	etic model Association test			I	Heterogen	eity	Egger's test	Begg's test
	OR (95%CI)	Z	р	χ2	I ² (%)	Р	P-value	P-value
CT vs TT	1.01 (0.85-1.20)	0.12	0.91	17.39	65	0.008	0.442	0.293
CC vs TT	1.39 (0.91-2.11)	1.52	0.13	47.77	87	< 0.00001	0.004	0.004
CT+CC vs TT	1.11 (0.88-1.39)	0.90	0.37	33.92	82	< 0.00001	0.066	0.051
CC vs CT+TT	1.31 (0.91-1.89)	1.46	0.14	40.85	85	< 0.00001	0.001	0.002
CT vs CC+TT	0.99 (0.87-1.12)	0.22	0.83	11.12	46	0.08	0.540	0.881
C vs T	1.18 (0.96-1.46)	1.55	0.12	57.76	90	< 0.00001	0.011	0.011

http://mbrc.shirazu.ac.ir

A Study or Subgroup	Experim Events	ental Total	Contr Events	rol Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% Cl	B Study or Subgroup	Experim Events	ental Total	Contr Events	ol Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% Cl
Chanthra 2015	107	162	99	176	1.51 (0.97, 2.35)		Chanthra 2015	49	104	30	107	2.29 [1.29. 4.05]	
Eaterninour 2016	5	15	14	46	1 14 10 33 3 961		Fateminour 2016	18	28	4	36	14 40 13 94 52 591	
liang 2011	136	284	205	378	0.78 [0.57, 1.06]		liang 2011	42	190	54	227	0.91 [0.57, 1.44]	-
Li 2018	82	164	76	164	1.16 (0.75, 1.79)		Li 2018	23	105	s	93	4 94 [1 79 13 59]	
Xie 2013	458	869	400	853	126 (1.04 1.52)		Xie 2013	140	551	142	595	1 09 10 83 1 421	+
7hou 2016	549	994	614	1046	0.87 10 73 1 031	-	7hou 2016	131	576	175	607	0 73 10 56 0 941	-
7hi 2016	761	1520	991	1865	0.88 [0.77, 1.01]	-	7hu 2016	194	952	310	1184	0.72 [0.59, 0.88]	
2.00 2.020		2767	~~~	1000	0.00 [0.17, 1.04]		200 2020			210		1.1 × 10.2 ×, 0.001	
Total (95% CI)		4008		4528	1.01 [0.85, 1.20]	▲	Total (95% CI)		2507		2849	1.39 [0.91, 2.11]	•
Total events	2098		2399			Ť	Total events	597		720			•
Heterogeneity Tau ²	0.03: Chi	2 = 17.3	9 df =	6 (P =	0.0081 F = 65%	+ + + + + + + + + + + + + + + + + + + +	- Heteropeneity Tau ² -	0.24 Ch	$r^2 = 47.7$	77 df =	6 (P < 1	0.00001r F = 87%	
Test for overall effect	7 = 0.12	(P = 0.9	1)	** -		0.1 0.2 0.5 1 2 5 10	Test for overall effect	7 = 1 52	(P = 0.1	31			0.01 0.1 1 10 100
		Q - V.2	*)			Favours [experimental] Favours [control]	rest for overall energy	L - 1.76	φ - v .,				Favours [experimental] Favours [control]
-							-						
C	Experim	ental	Conti	rol	Odds Ratio	Odds Ratio	D	Experin	nental	Cont	rol	Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	Study or Subgroup	Events	Total	Events	Total	M-H, Random, 95% CI	M-H, Random, 95% CI
Chanthra 2015	156	211	129	206	1.69 [1.12, 2.57]		Chanthra 2015	49	211	30	206	1.77 [1.07, 2.93]	
Fatemipour 2016	23	33	18	50	4.09 [1.60, 10.47]		Fatemipour 2016	18	33	4	50	13.80 [4.03, 47.22]	
Jiang 2011	178	326	259	432	0.80 [0.60, 1.07]		Jiang 2011	42	326	54	432	1.04 [0.67, 1.59]	-
LI 2018	105	187	81	169	1.39 [0.92, 2.11]		LI 2018	23	187	5	169	4.60 [1.71, 12.39]	
Xie 2013	598	1009	542	995	1.22 [1.02, 1.45]	+-	Xie 2013	140	1009	142	995	0.97 [0.75, 1.24]	+
Zhou 2016	680	1125	789	1221	0.84 [0.71. 0.99]	-	Zhou 2016	131	1125	175	1221	0.79 [0.62, 1.00]	+
Zhu 2016	955	1714	1301	2175	0.85 [0.74, 0.96]	•	Zhu 2016	194	1714	310	2175	0.77 (0.63, 0.93)	+
						-						,,	
Total (95% CI)		4605		5248	0.96 [0.89, 1.04]	•	Total (95% CI)		4605		5248	1.31 [0.91, 1.89]	•
Total events	2695		3119			1	Total events	597		720			·
Heteropeneity. Chi2 =	33.92. df	= 6 (P -	0.000	01r 🖡	- 82% -		Heteroceneity: Tau ²	= 0.17: C	$i^2 = 40.$	85. df =	6 (P <	0.00001r F = 85%	+
Test for overall effect	Z = 0.98	(P = 0.3	31			0.1 0.2 0.5 1 2 5 10	Test for overall effect	Z = 1.46	(P = 0	141			0.02 0.1 1 10 50
		¢				Favours (experimental) Favours (control)							Favours (experimental) Favours (control)
F	for a start		e		Odds Basis		F	Franke	and all	6	rel.	Odds Burlin	Odds Busis
Charles on Carbonness	Experim	ental	Contr	Tetel	Udds Ratio	Odds katio	funder og furbannen	Experin	Tatal	Cont	Tatal	Odds Katio	Odds katio
Study or Subgroup	Events	10(2)	events	TOTAL	M-H, Kandom, 95% CI	M-H, Kandom, 95% CI	Study or Subgroup	Events	10(a)	Events	1014	M-H, FIXED, 95% CI	M-H, Fixed, 95% CI
Chanthra 2015	107	211	99	206	1.11 [0.76, 1.63]		Chanthra 2015	205	922	159	912	150 [1.14, 1.98]	
Fatemipour 2016		35	14	50	0.46 [0.15, 1.45]		Fatemipour 2016	91	00	22	100	5.81 [2.95, 11.55]	
Jiang 2011	135	526	205	952	0.79 [0.59, 1.06]		Jiang 2011	220	652	515	804	0.90 [0.72, 1.11]	
Li 2018	82	187	76	169	0.96 [0.63, 1.45]		LI 2018	128	374	86	338	1.52 [1.10, 2.11]	
Xie 2013	458	1009	400	995	1.24 [1.04, 1.48]		XUE 2013	/38	2018	684	1990	1.10 [0.97, 1.25]	-
Zhou 2016	549	1125	614	1221	0.94 [0.80, 1.11]	-	2hou 2016	811	2250	964	2442	0.86 [0.77, 0.97]	1
Zhu 2016	761	1714	991	2175	0.95 [0.84, 1.08]	•	2hu 2016	1149	3428	1611	4350	0.86 [0.78, 0.94]	•
T							Track OTH CD		0310		10400	0.00 (0.01, 1.02)	
Total (95% CI)		4605		5248	0.99 [0.87, 1.12]	•	10(a) (95% CI)		9210		10430	0.96 [0.91, 1.02]	1
Total events	2098		2399				Total events	3292		3839			
Heterogeneity: Tau*	0.01; Chi	* = 11.1	2, df =	6 (P =	0.08); 1" = 46%	02 05 2 5	 Heterogeneity: Chi² = 	57.76, d	= 6 (P	< 0.0000	01); l ^e =	90% 0	1 0 2 0 5 1 2 5 10
Test for overall effect	Z = 0.22	(P = 0.8	3)			Favours [experimental] Favours [control]	Test for overall effect:	Z = 1.26	(P = 0.2	21)			Favours [experimental] Favours [control]

Moazeni-Roodi and Hashemi/Mol Biol Res Commun 2018;7(3):119-124 DOI:10.22099/mbrc.2018.29688.1323MBRC

Figure 2: The pooled ORs and 95%CIs for the association between *STAT3* rs1053004 polymorphism and cancer susceptibility. The forest plot for relationship between *STAT3* rs1053004 polymorphism and cancer susceptibility for CT vs TT (**A**), CC vs TT (**B**), CT+CC vs TT (**C**), CC vs CT+TT (**D**), CT vs CC+TT (**E**), and C vs T (**F**).

Figure 3: The funnel plot for the test of publication bias. The funnel plot for CT *vs* TT (**A**), CC *vs* TT (**B**), CT+CC *vs* TT (**C**), CC *vs* CT+TT (**D**), CT *vs* CC+TT (**E**), and C *vs* T (**F**).

http://mbrc.shirazu.ac.ir

Moazeni-Roodi and Hashemi/Mol Biol Res Commun 2018;7(3):119-124 DOI:10.22099/mbrc.2018.29688.1323 MBRC

Sensitive analysis was conducted though deleting each study one by one, and the results indicated that the pooled ORs were not considerably altered, proposing the stability of our meta-analysis.

DISCUSSION

The JAK/STAT cascade is an important signal transduction pathway in cytokine and growth factor signaling, regulating several cellular processes including cell proliferation, differentiation, migration and survival [17]. STAT3 is basically activated by phosphorylation of the conserved tyrosine residue at position 750 (Tyr₇₀₅), which leads to dimerization and translocation to the nucleus through interactions with importins and activate transcription of its target genes [18, 19]. Constitutive activation of JAK/STAT signaling pathway is well-known in cancers [17, 20, 21]. Preceding studies inspected the possible relationship between rs1053004 polymorphism and risk of various cancer including hepatocellular carcinoma [10-13], gastric cancer [14], pancreatic cancer [15], and non-small cell lung cancer [16]. The data were controversial. Consequently, we performed a meta-analysis of all available case–control studies to find out the exact role of rs1053004 polymorphism on cancer risk. The outcomes of our meta-analysis on seven case-control studies including 4,605 cancer cases and 5,248 controls proposed no significant association between rs1053004 variant and cancer risk.

There are some limitations that should be addressed. First, high heterogeneity was observed in some of our pooled results, which might have negative impact on our conclusions. Second, in this study, all subjects are of Asian descent, so statistical power for analyses in other ethnicities is limited. Third, the characteristics of included studies, such as age and sex, were varied and might affect the results of meta-analysis.

To the best of our knowledge, our study is the first comprehensive meta-analysis failed to find any significant association between rs1053004 polymorphism and cancer risk. Further studies in others ethnic groups are required to give more comprehensive understanding the exact role of rs1053004 polymorphism on cancer risk.

Acknowledgement: This study was supported by Zahedan University of Medical Sciences.

Conflict of Interest: The authors have no conflict of interest to declare.

REFERENCES

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.
- Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-386.
- 3. Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med 2008;359:2143-2153.
- 4. Hashemi M, Bahari G, Markowski J, Malecki A, Los MJ, Ghavami S. Association of *PDCD6* polymorphisms with the risk of cancer: Evidence from a meta-analysis. Oncotarget 2018;9: 24857-24868.
- 5. Raz R, Durbin JE, Levy DE. Acute phase response factor and additional members of the interferon-stimulated gene factor 3 family integrate diverse signals from cytokines, interferons, and growth factors. J Biol Chem 1994;269:24391-24395.
- 6. Choi JY, Li WL, Kouri RE, Yu J, Kao FT, Ruano G. Assignment of the acute phase response factor (APRF) gene to 17q21 by microdissection clone sequencing and fluorescence in situ hybridization of a P1 clone. Genomics 1996;37:264-265.

Moazeni-Roodi and Hashemi/Mol Biol Res Commun 2018;7(3):119-124 DOI:10.22099/mbrc.2018.29688.1323

- 7. Darnell JE, Jr. STATs and gene regulation. Science 1997;277:1630-1635.
- Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018;23:12.
- 9. Yan R, Lin F, Hu C, Tong S. Association between *STAT3* polymorphisms and cancer risk: a meta-analysis. Molecular genetics and genomics 2015;290:2261-2270.
- 10. Chanthra N, Payungporn S, Chuaypen N, Pinjaroen N, Poovorawan Y, Tangkijvanich P. Association of single nucleotide polymorphism rs1053004 in signal transducer and activator of transcription 3 (*STAT3*) with susceptibility to hepatocellular carcinoma in Thai patients with chronic hepatitis B. Asian Pac J Cancer Prev 2015;16:5069-5073.
- 11. Fatemipour M, Arab Zadeh SAM, Molaei H, Geramizadeh B, Fatemipour B, Vahedi SM, Malekpourafshar R. Study on the relationship of demographic characteristics of rs1053004 in *STAT3* gene in patients with HCC following chronic HBV infection. Iran J Virol 2016;10:40-47.
- 12. Li M, Li F, Li N, Sang J, Fan X, Deng H, Zhang X, Han Q, Lv Y, Liu Z. Association of polymorphism rs1053005 in *STAT3* with chronic hepatitis B virus infection in Han Chinese population. BMC Med Genet 2018;19:52.
- 13. Xie J, Zhang Y, Zhang Q, Han Y, Yin J, Pu R, Shen Q, Lu W, Du Y, Zhao J, Han X, Zhang H, Cao G. Interaction of signal transducer and activator of transcription 3 polymorphisms with hepatitis B virus mutations in hepatocellular carcinoma. Hepatology 2013;57:2369-2377.
- 14. Zhou F, Cheng L, Qiu L-X, Wang M-Y, Li J, Sun M-H, Yang Y-J, Wang J-C, Jin L, Wang Y-N. Associations of potentially functional variants in IL-6, JAKs and *STAT3* with gastric cancer risk in an eastern Chinese population. Oncotarget 2016;7:28112.
- 15. Zhu B, Zhu Y, Lou J, Ke J, Zhang Y, Li J, Gong Y, Yang Y, Tian J, Peng X, Zou D, Zhong R, Gong J, Chang J, Li L, Miao X. A single nucleotide polymorphism in the 3'-UTR of *STAT3* regulates its expression and reduces risk of pancreatic cancer in a Chinese population. Oncotarget 2016;7:62305-62311.
- Jiang B, Zhu Z, Liu F, Yang L, Zhang W, Yuan H, Wang J, Hu X, Huang G. STAT3 gene polymorphisms and susceptibility to non-small cell lung cancer. Genet Mol Res 2011;10: 1856-1865.
- 17. Khanna P, Chua PJ, Bay BH, Baeg GH. The JAK/STAT signaling cascade in gastric carcinoma (Review). Int J Oncol 2015;47:1617-1626.
- 18. Zhong Z, Wen Z, Darnell JE, Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264:5-98.
- 19. Darnell JE, Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994;264:1415-1421.
- 20. Li W, Lee MR, Kim T, Kim YW, Cho MY. Activated STAT3 may participate in tumor progression through increasing CD133/survivin expression in early stage of colon cancer. Biochem Biophys Res Commun 2018;497:354-361.
- 21. To KF, Chan MW, Leung WK, Ng EK, Yu J, Bai AH, Lo AW, Chu SH, Tong JH, Lo KW, Sung JJ, Chan FK. Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. Br J Cancer 2004;91:1335-1341.