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ABSTRACT 
 
Current re-emergence of Nipah virus (NiV) in India caused 11 deaths so far and many 

patients were kept in quarantine. A thorough study of previous outbreaks occurred in Malaysia, 
Bangladesh and India represents cases with high rate of fatality due to acute encephalitis. Our 
work involves genome analysis of NiV for prediction of miRNAs and their targeted genes in 
human in order to understand encephalitis origin. Ab-intio program-VMir was used for initial 
screening of genome, obtained nine pre-miRNAs was analyzed by ViralMir to check for any 
pseudo pre-miRNAs. Eighteen functional mature miRNAs were extracted from pre-miRNAs by 
using Mature-Bayes tool, which targets 669 genes in human genome as retrieved by miRDB. 
Gene ontology terms by PANTHER provide important pathways in which target genes were 
involved like Axon guidance, T cell activation, and nicotinic acetylcholine receptor signaling. 
Significant outcome was obtained after NCBI Gene and OMIM database mining and literature 
search for predicted target genes. TLR3, TJP1, NOTCH2, FHL1, and GRIA3 target genes 
obtained showed their involvement in host defense, blood brain barrier, neurogenesis, mental 
retardation and encephalitis. To conclude, we predicted significant genes in human that can be 
inhibited by miRNAs of NiV and results in etiology of encephalitis. 
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INTRODUCTION 
 
Nipah virus (NiV) belongs to family Paramyxoviridae and genus Henipavirus was first 

isolated from a patient in Sungai Nipah (a village in Malaysia) in 1998 [1]. Fruit bats of the 
genus Pteropus is the natural host of NiV [2]. Being zoonotic in origin, the virus can transmitted 
from bat to pigs, bat to human, pigs to human, human to human and horse to human. The mode 
of transmission can be direct contact with the pigs (who consumed infected fruits in farm) and 
their infectious secretions (respiratory droplets and throat or nasal secretions). The consumption 
of contaminated date palm or products derived from it also results in spread of virus in human 
population [3-5]. The first outbreak of the NiV occurred among pig farmers in Malaysia in 
September 1998, initially the outbreak was suspected to link with Japanese encephalitis [6]. 
Geographical distribution of NiV is not limited to Malaysia only as evident from outbreaks in 
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other Southeast Asian countries such as Singapore [7], India [8] and Bangladesh [9]. Malaysian 
outbreak occurred during 1998-99 was the largest claiming 105 deaths with 40 % fatality rate, 
mostly pig farmers. Bangladesh has greatest number and frequency of outbreaks that occurred 
from 2001 to 2013 claiming 187 deaths with 80 % fatality rate [10-12]. The first outbreak in 
India occurred in Siliguri, West Bengal in 2001 claiming 45 deaths with fatality rate of 68 % 
[13], followed by a second outbreak in 2007 in Nadia district, West Bengal, which borders 
Bangladesh and resulted in 5 deaths with 100 % fatality rate [14]. 

Infected patients showed clinical signs similar to flu such as fever, headache, dizziness, 
myalgia and vomiting. These initial symptoms may be followed by acute encephalitis that is 
characterized by drowsiness, disorientation, signs of brainstem dysfunction, convulsions, coma 
and other signs [15-17]. In case of acute encephalitis virus was isolated from CNS, lungs, 
kidneys, spleen, lymph nodes, and endothelial tissue of the smaller blood vessels [18]. Usually 
the mean incubation period for virus infection varies from 6-14 days [19-20]. 

Determination of virus infection can be done by virus isolation, nucleic acid amplification 
and serological testing but being a biosafety level-4 (BSL-4) pathogen proper physical 
containment and security measures must be adopted to limit its transmission [21]. Various 
laboratory techniques used for its diagnosis are RT-PCR, ELISA and in some cases electron 
microscopy or immunoelectron microscopy can also be used [22, 23]. Currently, there is no 
approved vaccine available for the treatment of the NiV but antiviral drug ribavirin had some 
success in reducing the mortality occurred due to acute encephalitis [24, 25]. The recent and 
third outbreak in India in May 2018 caused 11 deaths and suspected to originate from 
consuming bat contaminated water. Even the WHO listed NiV in its blueprint list of priority 
diseases during annual review meeting occurred in Feb-2018. The list comprised diseases that 
have urgent needs of accelerated research and for which there is no efficacious drugs/vaccine is 
available. 

MicroRNAs (miRNAs) are small non-coding RNAs of size ~21 nucleotides that played role 
in post-transcriptional gene regulation by binding to complementary sites on mRNA and results 
either in inhibition of translation or complete cleavage of mRNA [26-27]. In addition to 
animals, plants and fungi [28-29], miRNAs are also encoded by viruses and involved in 
penetrating the host defense mechanism, cell differentiation, apoptosis and cell proliferation 
[30]. Viral miRNAs target specific genes in host that were involved in important pathways (cell 
growth, axon guidance and cell differentiation), thus helps virus particle to evade host immune 
system and their continuous proliferation [31-33]. Mostly DNA viruses encode miRNAs but 
RNA viruses also have potential of coding miRNAs to silent the host target genes [34, 35]. 
Experimental methods of miRNA identification is relied on expression in specific cell type and 
time and needs cloning from virus infected cell, therefore the computational approaches are 
frequently used for prediction of miRNAs and their target genes [36-37]. 

Many members of RNA virus families such as hepatitis A virus (HAV) [38], Dengue virus 
(DENV) [39], ZIKA Virus (ZIKV) [40], Ebola virus (EBOV) [41], Japanese Encephalitis virus 
(JEV) [42] and Kyasanur forest disease virus (KFDV) [43] were predicted to have encoded 
miRNAs. Recent outbreak in India, concern raised by WHO, no approved vaccine for the NiV 
and evidences of viral miRNAs targeting host genes encourage us to analyse the genome 
sequence data of the NiV for possible prediction of miRNAs and their target genes in human. 

 
 

MATERIALS AND METHODS 
 

Retrieval of NiV Genome sequence data: Complete genome sequence of Nipah virus 
(Accession number NC_002728.1) was retrieved from NCBI Genome database 
(https://www.ncbi.nlm.nih.gov/genome/). Genome is single stranded RNA molecule with linear 
topology and contains 18246 nucleotide base pair. 
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Precursor miRNAs (pre-miRNAs) identification: An ab-intio pre-miRNAs identification 
tool, VMir [44] is used for finding self complementary hair pin loop structures in NiV genome. 
VMir package contains two individual programs: VMir Analyzer and VMir Viewer. Analyzer 
was used for analyzing sequence for pre-miRNA identification whereas Viewer used for 
viewing and filtering out results of analyzer. pre-miRNAs were identified by keeping the 
parameter to default values for analyzer (window count: 500, conformation: linear, orientation: 
both) and stringent filtering was done by setting min. hairpin size: 70, min. score: 115 and min. 
window count: 35 in VMir viewer as previously described [45] to select high score candidate 
pre-miRNAs for further evaluation. 

 
Identification of potential pre-miRNAs: Filtered pre-miRNAs obtained through VMir 

were subjected to ViralmiR (http://csb.cse.yzu.edu.tw/viralmir/) [46], an online server dedicated 
to differentiate between potential viral pre-miRNAs from other pseudo pre-miRNAs. It is based 
on SVM (Support Vector Machine) model and is trained on sequence and structural features of 
experimentally validated pre-miRNAs data set. 

 
Energy calculation and Secondary structure prediction: The Mfold [47] web server 

(http://unafold.rna.albany.edu/?q=mfold) with default parameters was used to predict the 
secondary structure and minimum free energy (MFE) of pre-miRNAs. 

 
Identification of mature miRNAs from pre-miRNAs: Mature miRNAs were identified 

from pre-miRNAs sequences using Mature Bayes (http://mirna.imbb.forth.gr/MatureBayes. 
html) [48], an online tool that uses Naive Bayes Classifier (NBC) taking into account sequence 
as well as structural information of experimental predicted miRNA precursors. All the potential 
pre-miRNAs identified by ViralmiR was used for analysis.  

 
Prediction of Target genes in human: miRDB (http://mirdb.org/) [49], a web based server 

was used for prediction of target genes in human. Using custom target prediction, all the mature 
miRNAs were screened to identify target genes. miRDB uses the seeding approach and scan the 
3’ UTR (untranslated regions) of human’s gene for possible hybridization with miRNAs 
sequence.  

 
GO (Gene Ontology) analysis: Gene ontology analysis of the retrieved target genes was 

performed using PANTHER (Protein Analysis through Evolutionary Relationships) (http:// 
www.pantherdb.org) [50] to gain insight in to molecular functional, biological process and 
cellular component of the target genes products [51]. Gene IDs of target genes were used for 
this analysis to find GO terms related to gene products. 

 
Screening of target genes and literature data mining: NCBI Gene  (https://www.ncbi. 

nlm.nih.gov/gene) and (https://www.omim.org/) OMIM [52] (Online Mendelian Inheritance in 
Man) databases was searched for encephalitis disease genes in human and screening was done 
manually by crosschecking the predicted target genes with database genes. Literature search 
was performed for the screened target genes to support the evidence.  
 

 
RESULTS  

 
Computational miRNAs prediction depends on two approaches: ab-intio based and 

homology based. Evolutionary conservation tracing is the main motive of homology based 
approach and thus having limitation in finding novel miRNAs. But ab-intio based approach 
which search for hair-pin loop structure topology in genomic sequence is more of significance 

http://mbrc.shirazu.ac.ir/
http://csb.cse.yzu.edu.tw/viralmir/
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in locating novel pre-miRNAs and hence the derivative miRNAs because pre-miRNAs tends to 
form hair-pin loop structures during their biogenesis [53-55]. 

In our study we also used ab-intio based program, VMir for scanning the NiV genome for 
possible pre-miRNAs prediction. Genome sequence was analysed on both strands 
(Direct/Reverse) during pre-miRNAs prediction. We got nine pre-miRNAs (Fig. 1) with high 
score at stringent parameters (min. hairpin size: 70, min. score: 115 and min. window count: 35 
in VMir viewer) as previously described [45] to filter out imprecise candidate pre-miRNAs. Six 
pre-miRNAs predicted were on direct strand and three were on reverse strand. The length of 
pre-miRNAs was in the range 76-165 nucleotide. The genomic position, Vmir score and rank 
were shown in Table 1. 
 

 
Figure 1: Predicted pre-miRNAs structures. Hairpin loop structures of NiV predicted by m fold, 5' arm of 
mature miRNAs indicated by cyan, 3' arm by pink whereas dark green show overlapping  region. 
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Table 1: pre-miRNAs predicted by VMir 
Predicted pre-miRNA Rank Orientation Length (nt) Position on Genome VMir Score 
NiV-MR139 1 Reverse 87 12613-12699 212.3 
NiV-MD107 2 Direct 119 11042-11160 183.3 
NiV-MD130 3 Direct 114 13920-14033 180.8 
NiV-MD101 4 Direct 86 10445-10530 180.1 
NiV-MD116 5 Direct 124 12451-12574 171.9 
NiV-MR186 6 Reverse 165 17226-17390 171.6 
NiV-MR26 7 Reverse 76 2273-2348 155.3 
NiV-MD163 8 Direct 93 17254-17346 152.6 
NiV-MD14 9 Direct 88 1417-1504 130.4 

 
False-positive pre-miRNAs prediction is common limitation to all ab-intio prediction 

programs because of selection of the pseudo hair pin loops structures [56, 57], therefore to 
validate and find reliable results we examined all nine predicted pre-miRNAs by SVM based 
virus specific tool, ViralmiR. All nine pre-miRNAs were found to be potential in yielding 
miRNAs. Minimum free energy (MFE) calculation of pre-miRNAs sequence during folding is 
one of the features that confer stability values to it [58]. We used Mfold web server for MFE 
calculation (Table 2) and secondary structure prediction of pre-miRNAs. 

  
Table 2: Potential pre-miRNAs validated by ViralMir and Minimum Free Energy (MFE) calculated 
by Mfold 
Predicted pre-mi-RNA Potential/ Non-potential Minimum Free Energy (MFE) (-∆G. kcal/mol) 
NiV-MR139 Potential -30.70 
NiV-MD107 Potential -24.20 
NiV-MD130 Potential -34.40 
NiV-MD101 Potential -27.50 
NiV-MD116 Potential -35.30 
NiV-MR186 Potential -48.10 
NiV-MR26 Potential -25.50 
NiV-MD163 Potential -25.50 
NiV-MD14 Potential -27.80 

 
After initial identification and validation, pre-miRNAs sequences were subjected to Mature 

Bayes for retrieving the small mature miRNAs. Large pre-miRNAs sequences were cleaved to 
short mature miRNAs of 22 nucleotide length. We got eighteen mature miRNAs from nine pre-
miRNAs sequences on 5’ and 3’ stem location as shown in Table 3. Because one or both strands 
can serve as mature miRNA molecule depending on the assembly of RISC complex [59], we 
kept both for further analysis. 

 
Table 3: Mature miRNAs sequences predicted by MatureBayes 
Mature miRNAs Length (nt) Location Mature miRNAs sequence 
NiV-MR139 5P 22 5’ CAUGUGCGGGGAGGUAAAGAGG 
NiV-MR139 3P 22 3’ CCCUAUACCCAUUUAUUAUAGU 
NiV-MD107 5P 22 5’ UCAAGUUCUAAGCAUAAUGAUA 
NiV-MD107 3P 22 3’ AAUGCGAACUUGUCUUGAUGUA 
NiV-MD130 5P 22 5’ AAAGUUCAUCCUAAUCUUCCCU 
NiV-MD130 3P 22 3’ UUGAAAGGUUAAGGAUGAACUU 
NiV-MD101 5P 22 5’ CUAAUUGACAGAAUCAAUUGGA 
NiV-MD101 3P 22 3’ UUGGAUAAGCGCGGGUGUAUUC 
NiV-MD116 5P 22 5’ AUCCUAUUCUUGAGGCUAAAGU 
NiV-MD116 3P 22 3’ AAAGUUGCUGCAGAAAAAGUGA 
NiV-MR186 5P 22 5’ CUUGAGAUUGGGAAUCCAGGGG 
NiV-MR186 3P 22 3’ AUUAGAUGGGAAUGUUCUACUA 
NiV-MR26 5P 22 5’ AUCCUAGAGUAAAUCUCUUGGA 
NiV-MR26 3P 22 3’ UUUCUUAAUGAGUUAGUAGUAC 
NiV-MD163 5P 22 5’ ACUAGUAGAACAUUCCCAUCUA 
NiV-MD163 3P 22 3’ AAUGUUAUGAUGGAGGACGGAC 
NiV-MD14 5P 22 5’ AGAUGAGUAUUUCAUCCCUUGC 
NiV-MD14 3P 22 3’ AUCCCUUGCUAACAGUGUGCCG 
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miRNAs exerts their effects by targeting the mRNA of protein coding gene of the cell, thus 
predicting the target of miRNAs directly revealed their function in the cell [60]. Computational 
predictions of target depend on the Watson-Crick base pairing between miRNA and mRNA 
molecule and mostly used seed pairing approach [61, 62]. Target prediction by miRDB for all 
mature miRNAs gave 769 target genes (supplementary Table) in human genome. The server 
uses the MirTarget algorithm, which is based on 7-mer seeding approach and custom predict 
miRNAs targets in human gene’s 3’ UTRs. We selected target genes with miRDB score >80 
because a predicted target with prediction score >80 is most likely to be real and not required 
any other supporting evidence [49]. 

Gene ontology analysis of the target genes by PANTHER revealed their involvement in 
different clusters of molecular functions, cellular component, biological process and pathway. 
The clustering approach proved to be significant in determination target gene molecular 
function (Fig. 2a), cellular component (Fig. 2b), biological process (Fig. 2c) and pathway (Fig. 
2d) of large data set at once. In molecular function cluster target genes products were depicted 
to play role in translation regulator activity (GO:0045182), signal transducer activity 
(GO:0004871) binding (GO:0005488) and receptor activity (GO:0004872), which shows that 
inhibition of these gene product might lead to abnormal state in body. Biological process cluster 
classification have proteins which are involved in immune system response (GO:0002376), 
response to stimulus (GO:0050896), biological adhesion (GO:0022610) and localization 
(GO:0051179) etc. Biological processes mentioned are significant for defense against viral 
infection. Pathway clusters analysis showed pathways that can mediate the disease in human. 
Interference in pathways like Axon guidance mediated by netrin (P00009), Axon guidance 
mediated by semaphorins (P00007), T cell activation (P00053), Nicotinic acetylcholine receptor 
signaling pathway (P00044), Alzheimer disease-amyloid secretase pathway (P00003) and 
Parkinson disease (P00049) can lead to acute encephalitis. Cellular component classification 
also suggest the target gene products are part of synapse (GO:0045202), cell junction 
(GO:0030054), extracellular region (GO:0005576) and organelle (GO:0043226) etc. Significant 
results obtained through GO analysis prompt us to uncover the encephalitis disease genes 
among the 769 target genes. Manual screening of target genes with NCBI Gene database and 
OMIM encephalitis disease genes identified five target genes. Literature mining results (Table 
4.) of five target genes discovered their role in normal brain functioning and disorders.  

 
Table 4: Screened target genes role and associated disorders 

Mature mi-RNA Target Gene Description Role/Disease PMID 
NiV-MR26 5P TLR3 Toll Like Receptor 3 Host defense against 

viruses 
16877304, 
26298326, 
15558055 

NiV-MR186 5P TJP1 Tight Junction Protein 1 Blood-brain barrier/ 
Encephalitis 

10595922, 
24198423 

NiV-MD130 3P NOTCH2 Neurogenic Locus Notch 
Homolog Protein 2 

Neurogenesis 9720489 

 
NiV-MD130 5P FHL1 Four And A Half LIM Domains 1 Muscular dystrophy 27765816 

 
NiV-MD116 5P GRIA3 Glutamate Ionotropic Receptor 

AMPA Type Subunit 3 
Neurophysiologic 
processes/ Rasmussen 
encephalitis 

16713244, 
19338055 
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v 
 
Figure 2: Go Analysis of target genes: Target genes were found to be involved in molecular function 
(2a), cellular component (2b), biological process (2c) and pathways (2d). 
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TLR3 (Toll Like Receptor 3) expressed in human neurons during innate immune response 
confirmed its role in the host defense against viruses. It works by recognizing the molecular 
patterns specific to microorganisms [63]. Degradation of TJP1 (Tight Junction Protein 1) during 
Japanese encephalitis virus and human Immunodeficiency virus-1 infection caused breached in 
blood-brain barrier (BBB) and hence results in neurological symptoms leads to encephalitis [64, 
65]. NOTCH2 (Neurogenic Locus Notch Homolog Protein 2) participates in neurogenesis and is 
key protein in adult brain, impairment in signaling of NOTCH2 contribute to neurological 
disease manifestation [66, 67]. The expression evidences of FHL1 (Four And A Half LIM 
Domains 1) in brain tissue and interaction with PLEKHG2 (Pleckstrin Homology And RhoGEF 
Domain Containing G2) revealed its role in brain cells [68]. FHL1 mutation lead to muscular 
dystrophy is main disorder related to this target gene [69]. Lastly, GRIA3 (Glutamate Ionotropic 
Receptor AMPA Type Subunit 3) are the predominant excitatory neurotransmitter receptors in 
the mammalian brain and are activated in a variety of normal neurophysiologic processes. 
Diseases associated with GRIA3 include mental retardation and Rasmussen encephalitis [70, 
71]. 
 
 

 DISCUSSION 
 
Current outbreak of NiV in India posed serious problem and its transmission to other 

neighboring countries was suspected. Unavailability of an approved vaccine makes it more fatal 
due to acute encephalitis it caused in infected patients. Previous studies on NiV dominantly 
related to its entry mechanism in to host [72, 73] and lack of knowledge about disease 
manifestation prevent us to tackle this deadly virus. Most of the viruses that caused fatal 
outbreaks target the brain cells and lead to impairment of normal functioning [74]. 

Role of human miRNAs interaction with NiV during viral entry was identified [75] but 
prominent evidences from other viruses [76-78] miRNAs screening and targeting of their host 
genes were also documented previously and their possible relation to disease mechanism cannot 
be ruled out. Here in this work, we used computational prediction methods to predict miRNAs 
in NiV genome and their targeted genes in human. We successfully found eighteen miRNAs 
from nine pre-miRNAs obtained by genome analysis of NiV. By analyzing the gene ontology 
terms and screened target genes, we found target gene TLR3 involved in host defense against 
viruses whereas TJP1 and GRIA3 silencing can lead to encephalitis. NOTCH2 and FHL1 
expression are needed for normal neurogenesis and muscle functioning respectively. Pathways 
obtained through GO analysis also supported the results. Five different miRNAs (NiV-MR26 
5P, NiV-MR186 5P, NiV-MD130 3P, NiV-MD130 5P, and NiV-MD116 5P) predicted to code 
by virus genome can down regulate these genes and results in disease manifestations.  

In summary, this is the first paper that predicted miRNAs in NiV genome and their target 
genes in human. Target genes and pathway analysis gave insight in to underlying disease genes, 
the predicted miRNAs mimics can be synthesized to check their hybridization with proposed 
target genes and can become targets for antiviral therapy.  
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