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ABSTRACT 

 
Multiple gene silencing is being required to target and tangle metabolic pathways in 

eukaryotes and researchers have to develop a subtle method for construction of RNA 
interference (RNAi) cassettes. Although, several vectors have been developed due to 
different screening and cloning strategies but still some potential limitations remain to 
be dissolved. Here, we worked out a simple cloning strategy to develop multisite small 
interfering RNA (siRNA) cassette from different genes by two cloning steps. In this 
method, effective siRNA sites in the target messenger RNAs (mRNAs) were determined 
using in silico analysis and consecutively arranged to reduce length of inverted repeats. 
Here, we used one-step (polymerase chain reaction) PCR by designed long primer sets 
covering the selected siRNA sites. Rapid screening, cost-effective and shorten 
procedure are advantages of this method compare to PCR classic cloning. Validity of 
constructs was confirmed by optimal centroid secondary structures with high stability 
in plants.    

 
Key words: Cloning strategy; Computational modeling; One-step PCR method; 
siRNA-targeting cassette 

 
 

INTRODUCTION 
 

RNA interference (RNAi) technology has become a potentially powerful research 
tool for gene silencing applications like fighting against virus and parasite infections or 
functional analysis of gene(s) of interest [1-6]. Recently, several studies reported on 
gene expression by reducing the steady-state target messenger RNA (mRNA) levels 
without affecting the nuclear transcription or post-transcriptional gene silencing (PTGS) 
[7-14]. Although, phenomenon of RNAi has first discovered in nematode 
Caenorhabditis elegans but we are aware of it in plants, fungi, nematodes, protozoa, 
insects (Drosophila melanogaster) and vertebrates [15-16]. So far, RNAi has not been 
found in prokaryotes, most likely, it is a eukaryotic regulational mechanism [15]. RNAi-
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based gene silencing also protect the organism's genome from transposons and viruses. 
Furthermore, it could be a part of the defense system in plants [3, 17, 18]. The genetic 
and biochemical studies suggest that RNAi takes place in a very similar manner in many 
organisms and the enzymes involved in this process exhibit high homology cross 
species. Briefly, initial step is being connected with appearance of double-stranded 
RNA (dsRNA) molecules in the cell, which is perfectly homologous in sequence to the 
silenced gene. The dsRNA molecules were targeted by an RNase III- like enzyme 
(Dicer) producing either small interfering RNAs (siRNAs) or micro RNAs (miRNAs) of 
20-24 nucleotides in length with additional characteristics, including 3'-hydroxyl 
termini, 2-nucleotide 3'-overhangs and 5'-phosphorelated termini. These short dsRNAs 
incorporated into multi-component nuclease complex known as RNA-induced silencing 
complex (RISC), where these RNAs function as sequence specific tags and target the 
silencing function to the homologous mRNAs [15]. The described process probably 
takes place in the cytoplasm. In plants and worms, amplification of the silencing signal 
and cell- to-cell RNAi spreading was observed. The RNA-dependent RNA polymerase 
(RdRp) enzyme has found in both plants and C. elegans. Moreover, it is responsible for 
the generation and amplification of siRNA into dsRNAs [15, 19]. 

According to recent studies related to RNAi mechanism, RNAi is triggered by any 
type of dsRNA molecule structures produced from transcripts of the endogenous 
transposons, viruses, viral satellites, viroids or transcripts of transgenes. The dsRNAs 
can also be introduced heterochromatic DNA that makes hairpin- like RNA secondary 
structure, experimentally [16]. Although in mammalian, nematodes and flies, 
si/miRNAs have been induced using either chemically synthesized siRNAs or vector-
based short hairpin RNAs (shRNAs), in plants it is more efficiently achieved by specific 
expression cassettes that produce self-complementary hairpin- like RNA molecules [20-
26]. However, realizing the importance of RNAi technology, leads to describing the 
different reports about the development of various vectors for the construction and 
expression of hairpin- like RNA constructs in plant cells. These include, 
pH/KANNIBAL, GATEWAY cloning system-based RNAi vectors like pHELLGATE 
and pIPK series has been widely used for generating intron-containing hairpin RNA 
(ihpRNA) constructs in plants [25, 27]. In these vectors, expression of an RNAi-
inducing cassette will result in a dsRNA molecules composed of two distinct regions: a 
single-stranded loop, encoded by the spacer region and a double strand stem encoded by 
an inverted repeat [25]. With these properties, the efficiency of the RNAi- inducing 
cassette constructs account for the most determinant factor in generation of an effective 
high-throughput dsRNA molecule.  

According to several reports, the most RNAi- inducing cassette constructs were 
generated using polymerase chain reaction (PCR-based methods) and multiple 
restriction- ligation steps for cloning into desired RNAi-based vector, which is costly, 
tedious, and more time-consuming [20, 28-31]. In this work, we have identified efficient 
siRNA candidates from high-throughput study of siRNAs derived from transcript of 
plant gene of interest. To generate target repeats for making an effective dsRNA region, 
we have introduced a simple and effective one-step PCR method adopted using long 
primer sets, which were covered full regions of target mRNA with the number of highly 
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potent siRNA content. Here, a simple strategy for rapid cloning of an inverted repeat for 
making multisite siRNA-targeting cassette is described. 
 

 
MATERIALS AND METHODS 

 
Plasmid materials: The pTG19-T cloning vector (Vivantis, USA) derived from 

pTZ19-R vector (Accession no. in Genbank: Y14835.1) was used as a plasmid 
backbone. 

  
Determination of multiple presumed-siRNA sites in the target mRNAs: So far, 

a number of experimental rules on siRNA duplex features have frequently reported. These 
include the asymmetry rules for siRNA duplex ends, high A/U content at the 5ʹ-end of the 
antisense strand, high G/C content at the 5ʹ-end of sense strand, 30-50% GC content, 
thermodynamic properties in term of the secondary structures and accessibilities of 
siRNA and target mRNA of gene(s) of interest [32-37]. The pssRNAit web server was 
used to in silico identified efficient siRNAs candidates in the gene(s) of interest 
(Http://plantgrn.noble.org/pssRNAit/).  

 
Primer designing for One-step PCR: The specific forward and reverse primers 

designed to conduct one-step PCR for synthesis of target sequences from desired genes 
(Table 1). These genes were α/β-gliadin (JX141486), γ-gliadin (FJ006593) and ω-
gliadin (KF412584) multigenes from Triticum aestivum [10], small glutamin-rich 
tetratricopeptide gene (SGT1) (AY899199) from Nicotinia bentamiana [29], putrescine 
N-methyl transferase2 (PMT2) (AF126809) from Nicotinia tabacum [9] and fatty acid 
desaturase2-1 (FAD2-1) (AY954300) from Glycine max [13]. The primer sets of 50nt-
long designed using Oligo version 7.56 analyzer software. The restriction sites of KpnI, 
NdeI and XbaI, PstI added at the 5'-ends of forward and reverse primers for product I 
and product II, respectively. To quarantine the base complementation at the 3'-end and 
efficient annealing of primers, the obtained primer sequences was checked using Oligo 
version 7.56 analyzer software. One-step synthesis reaction was carried out in a 25µl 
volume at 50ºC, consisting of 800nM of each 50-mers primers and 12.5 µl of 2X PCR 
Master Mix (Vivantis, USA; cat. no. PR8252C). The reaction was performed in only 
one extension step for 1 min at 72 ºC. The one-step amplificants were loaded using 
1.2% agarose gel containing 20000X Red Safe™ (Intron biotechnology, USA; cat. no. 
21141) 5% (v/v) and subjected to electrophoresis at 85 volts. The gels were 
photographed by gel imaging Quantum ST4 (Vilber Lourmat, France). 

 
Cloning of amplified multisite siRNA-targeting cassette: The one-step PCR 

product I was purified by gel purification kit (Bioneer, South Korea; cat. no. K-3035). 
Then it was cloned into linear pTG19-T cloning vector by T4 DNA ligase (200u/µl, 
Vivantis). The ligation reaction mixture was used in transformation of Escherichia coli 
strain DH5α competent cells. Following recovery of bacteria on antibiotic- free Lurai 
berthani (LB)-liquid culture (Miller), the cells were plated on LB-agar medium 
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containing ampicillin (100µg/ml), 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
(X-gal) (100µg/ml) and Isopropyl β-D-1-thiogalactopyranoside (IPTG) (1mM) to screen 
the recombinants by blue/white system. DNA plasmids of white colonies were extracted 
from LB-liquid culture by plasmid extraction kit (Bioneer, South Korea; cat. no. K-
3111). The inverted fragment (Product II) was sub-cloned into pTG-Direct by double 
digestion of PstI/XbaI enzymes. The exact size of the siRNA cassette constructs were 
validated by PstI restriction and sequencing. T7 promoter primer (TAA TAC GAC 
TCA CAT TAG GG) was used for sequencing. 

 

Table 1: Sequences of the primer sets with 50-mer in length specialized for six genes of interest 

Gene 
name 

Sequence 
of interest 
(Accession 

no.) 

 
Position 

of SiRNA 

Product no. Primer sequence (5'→ 3') 

α-
gliadin 

JX141486 220-283 I F:AGGGTACCTTGTATTGCAACAACACAGCATAGCGTATGGAAGCTCACAAG 
R:AGCATATGTGGTAAGTACTTTGTTGCAAAACTTGTGAGCTTCCATACGCT 

II F:AGTCTAGATTGTATTGCAACAACACAGCATAGCGTATGGAAGCTCACAAG 
R:AGCTGCAGTGGTAAGTACTTTGTTGCAAAACTTGTGAGCTTCCATACGCT 

ω-
gliadin 

KF412584 105-168 I F:ACGGTACCTCCCATCAACAACAACCATTTCCACAGCAGCCATATCCACAA 
R:ATCATATGGTTGCTGTGATGGATATGGTTGTTGTGGATATGGCTGCTGTG 

II F:ACTCTAGATCCCATCAACAACAACCATTTCCACAGCAGCCATATCCACAA 
R:ATCTGCAGGTTGCTGTGATGGATATGGTTGTTGTGGATATGGCTGCTGTG 

γ-
gliadin 

FJ006593 420-502 I F:ATGGTACCGCCCCAACAACAATTTCCGCAGCCCCAACAACCACAACAATC 
R:ATCATATGCGGTTGTTGTTGTTGGGGGAATGATTGTTGTGGTTGTTGGGG 

II F:ATTCTAGAGCCCCAACAACAATTTCCGCAGCCCCAACAACCACAACAATC 
R:ATCTGCAGCGGTTGTTGTTGTTGGGGGAATGATTGTTGTGGTTGTTGGGG 

FAD2-1 AY954300 1016-
1080 

I F:ATGGTACCCTCTAGGAAGGGCTGTTTCTCTTCTCGTCACACTCACAATAG 
R:ATCATATGAAGGCTAAATACATAGGCCACCCTATTGTGAGTGTGACGAGA 

II F:ATTCTAGACTCTAGGAAGGGCTGTTTCTCTTCTCGTCACACTCACAATAG 
R:ATCTGCAGAAGGCTAAATACATAGGCCACCCTATTGTGAGTGTGACGAGA 

PMT2 AF126809 1500-
1875 

I F:ATGGTACCATCGGCGGAGGAATTGGTTTTACATTATTCGAAATGCTTCGT 
R:ATCATATGCAATTTTTTCGATTGTAGGATAACGAAGCATTTCGAATAATG 

II F:ATTCTAGAATCGGCGGAGGAATTGGTTTTACATTATTCGAAATGCTTCGT 
R:ATCTGCAGCAAAAAACGATTGTAGGATAACGAAGCATTTCGAATAATG 

SGT1 AY899199 43-120 I F:AGGGTACCTGACGACCACTTTGAGCTCGCCGTTGACCTTTACACTCAAGC 
R:ATCATATGGTTCTTAGGAGTCATGGCAATTGCTTGAGTGTAAAGGTCAAC 

II F:AGTCTAGATGACGACCACTTTGAGCTCGCCGTTGACCTTTACACTCAAGC 
R:ATCTGCAGGTTCTTAGGAGTCATGGCAATTGCTTGAGTGTAAAGGTCAAC 

 
 
Computational modeling of hairpin RNA (hpRNA) secondary structure: The 
hpRNA secondary structures derived from resulted multisite siRNA-targeting cassettes 
were predicted using Srna module in Sfold program (version 2.2) 
(11TUhttp://sfold.wadsworth.org/cgi-bin/srna.pl/U11T). 

 
 

RESULTS AND DISCUSSION 
 

Construction of RNAi vectors are currently used with several rounds of 
restriction/ligation steps and PCR-based methods, which are considered costly and time-
consuming methods [25-30]. To adopt a simple strategy for making multisite siRNA 
cassette, the two-step procedure was carried out by a T/A cloning of one fragment 
(product I) followed by directional sub-cloning of its inverted orientation (product II). 
To achieve the spacer fragment without an additional cloning step, the 30bps fragment 
of cloning vector was used as the spacer between the inverted repeats. Total steps of the 

http://mbrc.shirazu.ac.ir/
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cloning strategy were illustrated in Fig 1a. Recently, one-step, zero-back ground 
ligation- independent cloning method (OZ-LIC) and pRNA Golden Gate (pRNA-GG) 
strategy were developed using one-step transformation. However, these methods have 
own potential limitations as the occasional presence of internal BsaI site(s), several 
rounds of PCR reaction for amplifying the target repeats [27, 29]. Here, we propose a 
short cut method with one restriction- ligation step, comparatively less labor and cost-
effective.  

Although, several studies reported the inverted repeats of 300-700 bp in length, the 
exact size of a dsRNA need to trigger RNAi in plants is still not entirely clear [24, 29]. 
However, the number of different potent siRNA sites within a target gene could be 
assuming as a critical point for triggering RNAi. Here, we elected totally six genes with 
and without intron containing from mono and dicot plants. The total number and 
nucleotide sequence of these siRNA sites was determined using pssRNAit server tool 
(Table 2). Consequently, three to four out of total 20 siRNA candidates were selected 
with 7-10 and 8-10 scores for off-target accessibility and efficiency values, respectively. 
In order to achieve a significant performance of dsRNA, the 3-4 highly potent different 
siRNA sites per gene were considered which consecutively arranged as the inverted 
repeats. This size reduction in the length of the previously reported target repeats is 
achievable by designing the specific long primer sets covering full region of siRNA 
sites (for more information see Table 1). 

In recent decade, to develop a plant specific RNAi-based cassette with 300-700bp 
dsRNA region, PCR-based methods were commonly used for separately amplifying 
cassette fragments. Recently, a method based on one-step PCR process was developed 
in order to generate shRNA expression vectors for silencing mammalian genes [31]. 
However, presence of only a siRNA site in the dsRNA region of desired shRNA, 
designing of several primer sets to obtain multiple hpRNA for silencing one target gene 
and amplifying these cassettes by traditional PCR-based methods after one-step PCR 
process account for such limitations of this method. Here, to obtain 80bp dsRNA with 
the efficient consecutively arranged siRNA sites, specific long primer sets covered full 
region of target repeats were designed and used for a single cycle PCR reaction (Fig. 
1b). Primer designing is extremely a critical step to achieve efficient amplificants and 
usually efforts have taken to use the minimum length (50-mers primer sets were 
designed for this work).  

The amplificants of one-step PCR (80bp-long fragment in this work for both products 
I and II) were validated by 1.2% agarose gel electrophoresis using single primer as a size 
control (Fig. 2a). In the cloning of fragments, the correct colonies were screened out by 
standard blue/white screening system. On average, eight out of ten selected white 
colonies contained the recombinant DNA plasmid named as pTG-Direct with 3060bp 
long. The DNA plasmids with 80bps product I were confirmed by NdeI restriction 
digestion (Fig. 2b). A correct direction of insert was also distinguished from ones with 
opposite orientation by restriction analysis of plasmid DNA by KpnI and NdeI restriction 
digestion (Fig. 2c). 

 
 

http://mbrc.shirazu.ac.ir/


 
 
 
 
 

Baghban-Kohnehrouz and Nayeri / Mol Biol Res Commun 2016;5(1):31-43                                      MBRC 

http://mbrc.shirazu.ac.ir 
36 

 

 

Table 2: High-throughput siRNA candidates retrieved from template sequences of six genes of interest 
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Figure 1: Schemat ic diagram of rapid and simple cloning strategy to obtain an efficient mult isite siRNA-
targeting cassette. (a) Strategy for cloning multisite siRNA-targeting cassette for gene of interest. (b) 
Diagram of Strategy for extending the inverted repeat. Taq DNA polymerase (circles) can extend in the 
presence of dNTPs (small colored squares) and PCR master mix the sense strand of two primers, which 
complemented 20nt-long at the 3´-end of both primers. The black arrows show the extending directions. 
 

The inverted XbaI/PstI fragment was sub-cloned in pTG-Direct plasmid to develop 
siRNA cassette. In the resulted plasmid inverted repeat easily separated from direct 
fragment with a 30 bps spacer. For detailed information on siRNA cassette constructs 
from six genes of interests see fig 2(d). In fig 2(e), the plasmids containing the siRNA 
cassette named pTG-siRNA Cassette (3140bps in length, Lane 3) were distinguished 
from plasmids harboring only direct fragments (3060bps in length, Lane 2). The correct 
size and concentration of the all samples were determined by 1kb DNA ladder (Lane M). 
In Fig 2(f), the size and concentrations of the reference bands of 1kb DNA ladder are 
illustrated. Furthermore, the correct plasmid DNAs with siRNA cassettes was validated 
by sequencing analysis. 

The hpRNA secondary structures of the all six siRNA cassettes were predicted by 
Srna module in Sfold program [39] and differences between centroid and minimum free 
energy (MFE) secondary structures derived from the siRNA targeting cassette 
constructs for six cassettes were shown in Table 3. We employ this approach with the 
aim of predicting the optimal hpRNA secondary structure with high stability for 
triggering RNAi mechanism in the target plant cell. According to reports, the ensemble 
centroid structure compared to MFE structure makes 30.0% fewer prediction errors and 
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is closer to optimal secondary structure due to the lower average base-pair distance 
between the centroid structure and the sample [40-44]. Therefore, the ensemble centroid 
structure with minimum ∆Gº and base pair distance values was considered as the 
optimum hpRNA secondary structure for each six siRNA-targeting cassette. The 
diagram of the six optimum hpRNA structures illustrated that the sense and antisense 
strands of hpRNA stem could spontaneously stablish a full desired dsRNA region, 
which can be involved in Dicer cleavage and triggering RNAi process (Fig. 3). 

 

 
Figure 2: Screening of the inverted repeats retrieved from six genes of interest. (a) Confirmation of one-
step PCR products I (Lanes 1-6) and products II (Lanes 7-12) in total six genes was illustrated, respectively. 
DNA concentrations and size of the one-step PCR products were determined using the 50-mer primer as a 
size control (lane P). (b) Screening of correct clones with product I inserts. The correct sizes of plasmid 
DNAs with product I for each cassette were validated by NdeI restriction digestion (Lanes 1-6) and 
compared with 1 kb DNA ladder (Lane M). The uncut-plasmid DNA as a control template was loaded in 
lane C. (c) Correct direction of product I inserts for each cassette was examined by KpnI (Lanes K1-K6) and 
NdeI (Lanes N1-N6) restriction digestions and compared with 1 kb DNA gene ruler (Lane M). With correct 
orientation of insert, product I fragment excised from cloning vector. The uncut- plasmid DNAs (Lane C1-
C6) validated the restriction digestion. (d) Validation of siRNA-targeting cassette constructs. The correct 
size of the DNA plasmids with double insert content have confirmed by PstI restriction analysis (samples 
1-6) and compared with gene ruler 1kb DNA ladder (Lane M) and empty vector (Lane C). (e) The 
plasmid DNA of pTG-Cassette (Lane 3) was distinguished based on size from p lasmid DNA of pTG-Direct 
(Lane 2). The uncut-plasmid DNA of pTG-cassette and pTG-Direct were shown in Lanes 4 and 1, 
respectively. The correct size DNA concentration of pTG-siRNA Cassette was also determined by 
comparing to 1 kb DNA ladder (Lane M). (f) Illustration of gene ruler 1kb DNA ladder (Thermo 
Scientific Co., USA) with three sharp reference bands (6000, 3000 and 1000 bp) loaded on 0.8% agarose 
gel by Red Safe™ 5% (v/v).  
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Table 3: All properties of hpRNA secondary structures for six genes of interest and differences between 
MFE and Centroid structures 

P

a
P MFE structure is located in the cluster of interest 

P

b
P MFE structure: an RNA secondary structure based on minimum free energy probability 

P

c
P Centroid structure: the structure in the entire structure ensemble that has the minimum total base-pair distance to the structures in 

the set. 
P

d
P P-value: the base-pair probabilit ies computed from a statistical sample with a default  size of 1000 structures for centroid structure 

of each cluster [39, 43]. 
 
 

In summary, with regard to the extensive applications of RNAi-based vectors in 
plant biotechnology research, we have developed a simple and cost-effective method for 
making a siRNA-targeting cassette containing efficient and consecutively arranged 
siRNAs from genes of interest with different gene structure in mono and dicot plants. In 
comparison of traditional PCR-based methods, rapid and cost-effective procedure 
account for such advantages of one-step PCR method. Furthermore, the optimal 
centroid structures with high stability in plant cells were achieved using computational 
modeling of the secondary structure of the cassettes. 
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