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ABSTRACT 
 
Pseudomonas aeruginosa is identified as a versatile opportunistic microorganism with 

metabolic diversity contributing to a wide range of health burdens, especially in 
immunocompromised patients. This bacterium is the cause of 10 to 20% of nosocomial 
infections. In this study, we evaluated the phenotypic characterizations of biofilm formation 
in P. aeruginosa clinical isolates using micro-titer plate assay. Indeed, we estimated the 
prevalence of QS (rhlI, rhlR, rhlAB, lasB, lasI, lasR, aprA) and virulence genes (pslA and cupA) 
by PCR. The results showed that among 69% of the isolates forming biofilm, 9% were strong 
biofilm producers, whereas 13% and 47% of isolates produced moderate and low amounts of 
biofilm, respectively. All isolates possessed cupA and seven QS genes (rhlI, rhlR, rhlAB, lasB, 
 lasI, lasR, aprA), while 92% of the isolates possessed the pslA gene. Identification of these 
genes and their association with biofilm formation can be advantageous in adopting therapeutic 
methods. 
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INTRODUCTION 
 
Pseudomonas aeruginosa is a rod-shaped, gram-negative, opportunistic versatile pathogen 

bacterium [1] leading to acute as well chronic infections in intensive care unit (ICU), 
immunocompromised, and cystic fibrosis patients [2,3]. Up to 10-20% of nosocomial infections 
are notably associated with P. aeruginosa pathogenesis. The World Health Organization 
(WHO) has classified this organism as the first antibiotic-resistance human pathogen making it 
necessary to develop novel antibacterial agents [4-7].  

Microbial communities are known as biofilms commonly exist in environmental and 
clinical settings [8]. They cause antibiotic resistance and help bacteria to evade the host immune 
system [9,10]. In this regard, P. aeruginosa can produce biofilm in the respiratory tract or 
pulmonary tissue of cystic fibrosis patients (CF) and on abiotic surfaces such as contact lenses 
and catheters [11,12]. Exopolysaccharides (EPSs) are a major constituent of microbial biofilms 
[13]. At least three EPSs including alginate, Pel, and Psl have been identified as associated with 
biofilm formation in P. aeruginosa [15]. In this context, Ma et al., (2006) demonstrated that Psl 
polysaccharide plays a significant role in the attachment of P. aeruginosa colony-biofilms to 
both abiotic and biotic surfaces at the primary phases. It as well improves the maintenance of 
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biofilm structure after adherence. It is also counted as that Psl serves as a scaffold for other 
biofilm components preserving the natural structure of biofilm [14]. 

The cupA gene cluster, another key player in the pathogenesis of P. aeruginosa, is more 
responsible for biofilm development during the early stages compared to type IV pili [16]. The 
expression of many virulence genes, including biofilm-associated factors in P. aeruginosa is 
regulated by Quorum sensing (QS) network [17]. QS is a complicated microbial cell-cell 
mechanism entailing in the production and maintenance of biofilm. Two QS systems, 
the las and rhl systems have been identified in P. aeruginosa so far. In this context, the LasI 
system controls the formation of the homoserine lactone (3-oxo-C12) signal molecule which 
plays a key role in forming biofilms [17,18]. It reacts with the LasR activator and in addition to 
positive feedback on itself, triggers several other virulence genes including lasB, lasA, aprA, 
and toxA [19]. 

This study aimed to evaluate the phenotypic biofilm formation and prevalence of 
aforementioned QS and virulence genes in the isolates cultured from clinical cases 
of P. aeruginosa infection. 

 
 

MATERIALS AND METHODS 
 
Bacterial strain: The bacteria used in this study were isolated from various clinical 

specimens (urine, skin, sputum, body fluid, blood, wound, central vein blood). They included 
PAO1, and 100 strains of P. aeuginosa stored in a bacterial collection of the School of 
Veterinary Medicine, Shiraz University. 

 
Biofilm assay: The biofilm was developed on a 96-well polystyrene micro-titre plate 

according to Christensen et al., with some changes [20]. Concisely, biofilm bacteria were grown 
in trypticase soy broth (TSB) medium (MERK Germany) enriched with 1% glucose (BDH 
England). After incubation at 37°C for 24 hours, the bacterial suspensions were diluted 1/100 
with sterile fresh TSB containing 1% glucose. A 200 µl of diluted microbial suspension was 
poured into the 96-well polystyrene Plates (SPL Korea) in triplicate. Negative controls only 
consisting sterile TSB medium. Three wells were used for each sample. Afterward, the plates 
were covered and incubated at 37°C for 24 hours. Subsequently, the solution content of the 
wells was aspirated and the wells were washed three times by addition 200 µl sterile phosphate-
buffered saline (PBS). The formed biofilms were fixed with absolute methanol (Merck 
Germany). After 15 minutes the plates were rinsed off with PBS and air-dried. The wells were 
stained with 200 µl of 1% crystal violet solution (Merck Germany). Excess stain was removed 
using sterile distilled water. Finally, stained biofilms dissolved in 33% (v/v) glacial acetic acid 
(Merck Germany). The OD value (ODw) of each well was provided at 570 nm using an ELISA 
reader (Biotek USA). All strains were categorized as represented by Stepanovic et al. [21]. The 
cut-off OD value (ODc) for each sample was described as three standard deviations above the 
mean OD of the negative control. The strains were introduced into four following groups 
according to the ODw: non-biofilm formation (0) (ODw ≤ ODc); weakly biofilm formation (+) 
(ODc<ODw≤2xODc); moderately biofilm formation (++) (2xODc < ODw ≤ 4xODc); and 
strongly biofilm formation (+++) (4xODc < ODw).  

 
PCR for detection of biofilm-related and QS genes: The bacterial isolates were evaluated 

for seven genes including Qs genes (rhlI, rhlR, rhlAB, lasB, lasI, lasR, aprA) and two other 
genes (cupA, pslA) contributing to biofilm formation by PCR. Nine primer pairs were used for 
polymerization, as previously described (Table 1) [19,22,23]. DNA extraction was performed 
using the boiling method. The PCR reaction mixture contained10 µl Master mix (1.5 X 
AMPLICON DENMARK), 0.5 µl of 10 pmol forward and reverse primers concentration, 2.5 µl 
DNA, and 6.5 µl of nuclease-free water. PCR programs for the detection of different genes are 
described in Table 2. 
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Table 1: Primers used for detection of the Quorum-Sensing and virulence genes 
Genes Sequence of primers Amplicon Size (bp) References 

rhlI 5′-TTC ATC CTC CTT TAG TTC TTC C 3′ 
5′-TTC CAG CGA TTC AGA GAG C-3′ 

155 
 

21 

rhlR 5′-TGC ATT TTA TCG ATC AGG GC-3′ 
5′-CAC TTC CTT TTC CAG GAC G-3′ 

133 21 

rhlAB 5′-TCA TGG AAT TGT CAC AAC CGC-3′ 
5′- ATA CGG CAA AAT CAT GGC AAA C-3′ 

151 21 

lasB 5′-TTC TAC CCG AAG GAC TGA TAC-3′ 
5′-AAC ACC CAT GAT CGC AAC-3′ 

153 21 

lasI 5′-CGT GCT CAA GTG TTC AAG-3′ 
5′-TAC AGT CGG AAA AGC CCA G-3′ 

295 21 

lasR 5′-AAG TGG AAA ATT GGA GTG GAG-3′ 
5′-GTA GTT GCC GAC GAC GAT GAA G-3′ 

130 21 

aprA 5′-ACC CTG TCC TAT TCG TTC C-3′ 
5′-GAT TGC AGC GAC AAC TTG G-3′ 

140 21 

cupA 5′-CTA CCG CTA TTC CAC CGA AG-3′ 
5′-AGG AGC CGG AAA GAT AGA GG-3′ 

172 22 

pslA 5′-CAC TGG ACG TCT ACT CCG ACG ATA T-3′ 
5′-GTT TCT TGA TCT TGT GCA GGG TGT C-3′ 

1119 23 

  
 

Table 2: PCR programs for detection of different genes 
Genes/Steps QS cupA pslA 
Initial denaturation 94°C/ 5min 94°C/ 5min 95°C/ 5min 
Denaturation 94°C/ 1min 95°C/ 40 sec 94°C/ 30 sec 
Annealing 56°C/ 1min 59°C/ 45 sec 55°C/ 30 sec 
Extension 72°C/ 1 min 72°C/ 1 min 72°C/ 1 min 
Final extension 72°C/ 8min 72°C/ 7 min 72°C/ 10 min 
Cycle 32 40 30 

 
 

RESULTS AND DISCUSSION 
 
In the present investigation, 100 clinical samples of P. aeruginosa were assessed for biofilm 

formation and the presence of QS, fimbrial cupA and pslA genes. In total, 69% of the isolates 
formed biofilm of which 9% shaped strong biofilm; 13% generated moderate biofilm and 47% 
formed weak biofilm. All of the isolates (100%) possessed seven QS genes (rhlI, rhlR, rhlAB, 
lasB, lasI, lasR, aprA) and cupA gene, while 92% (92/100) of the isolates possessed pslA gene 
(Fig. 1 and 2). 

The quantitative micro-titer plate assay, which is an efficacious method for biofilm 
detection has been used. Similar to our results, Pereze et al., [24] reported that 68% of the 
isolates formed biofilm. In other studies by Ghadaksaz et al., [25], and Lima et al. [26] 50.9 and 
58.1% of isolates formed biofilm, respectively. Heidari and Eftekhar [27] showed that 43% of 
the isolates formed biofilm, of which 66.7% were strong and 33.3% were weak producers. The 
results of these studies were lower than our research. In contrast, Banar et al. [28], showed that 
more than 96% of isolates causing burn wound infection produced biofilm, of which 30.9% 
formed strong biofilm, 47.3% formed moderate biofilm and 21.8% formed weak biofilm. 
Likewise, in another research, Kamali et al. [29], indicated that among 83.75% of the isolates 
formed biofilm, 16.25% produced strong biofilm; 33.75% produced moderate biofilm; and 
33.75% produced weak biofilm, while 16.25% of isolates did not produce any biofilm. Lima et 
al., [30], indicated that while 25% of isolates were non-adherent, 40% of them were weakly 
adherent, 25% were moderately adherent, and 10% were firmly adherent. Furthermore, in 
another study conducted by Lima et al., [31], among 77.5% of isolates produced biofilm, 42.5% 
were weakly adherent, 27.5% were moderately adherent and 7.5% were firmly adherent. 
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Collectively, in most of these studies, the number of isolates forming weak biofilm was higher 
than other isolates, confirming our findings. 

 

 
Figure 1: Agaros gel electrophoresis, Lane 1. pslA gene (1119bp), Lane 2. lasB, lasI, and lasR genes 
(153, 295 and 130bp), Lane 3. 50bp DNA ladder, Lane 4. rhlI and rhlR genes (133 and 155bp), Lane 5. 
Negetive control, Lanes 6 and 8 cupA gene (172bp). 
 

 
Figure 2: Agaros gel electrophoresis, Lane 1. 100bp DNA ladder, Lane 2. Negative control, Lanes 3 and 
4. aprA and rhlB genes (140 and 151bp). 

 
Biofilm formation is induced and regulated by numerous genes and environmental factors 

[32]. QS controls about 10% of genes in P. aeruginosa [33]. Therefore, the QS system is a 
potential target for developing novel therapies against P. aeruginosa infection. In this study, the 
genotypic analysis showed that all the isolates had seven QS genes mentioned earlier. Lima et 
al. [26] showed that four genes including lasI, lasR, rhlI, and rhlR were present in the isolates. 
Additionally, in another study by Lima et al., [31], 100 % of strains were positive for 
the lasR, rhlI and rhlR genes, and 97.5 % of them were positive for the lasI gene. Perez et al., 
[34], indicated that 90.1 % of isolates possessed lasI, lasR, rhlI, and rhlR genes. Moreover, 
Kadhim and Ali [35], reported that 81.6% of the isolates contained QS genes, among which the 
frequency of lasR, lasI, rhlR, and rhlI genes were 5, 78.3, 65, and 43.3%, respectively. 
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In the present study, the genes needed for biofilm organization were found in all isolates. 
However, 31% of the samples were not able to develop biofilms. This may be the result of some 
point mutations that occurred in the QS genes [36,37]. Another possibility is that the presence of 
several strains of P. aeruginosa at the site of the infection may lead to defective expression of 
QS genes [37]. 

All the studied isolates possessed the cupA gene. Similarly, Shafiei et al. [22] analyzed four 
clinical isolates and two standard strains of P. aeruginosa and showed that the cupA was present 
in all of the isolates. Vallet et al., [16], showed that cupA gene cluster plays a significant role in 
biofilm formation. They also indicated that CupA-dependent adhesions are more essential 
during the early stages of biofilm formation than type IV pili. 

In our study, pslA gene was identified in 92% of the isolates. In a study, Emami et al., [23], 
showed that none of the negative biofilm samples contained the pslA gene, while 42% of the 
biofilm-positive isolates had the pslA gene. Ma et al., [38], indicated that the Psl is a substantial 
biofilm component playing a critical role in the resistance of P. aeruginosa species. 

In conclusion, this study illustrated that the majority of clinical isolates of P. 
aeruginosa produced weak biofilm in vitro. It was also shown that the QS genes and virulence 
genes (pslA and cupA) were prevalent among the isolates. Identification of these genes and their 
association with biofilm formation can be advantageous in adopting therapeutic methods 
against P. aeruginosa infections. 
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