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ABSTRACT 
 

Francisella tularensis is a pathogenic, aerobic gram-negative coccobacillus bacterium. It is 
the causative agent of tularemia, a rare infectious disease that can attack skin, lungs, eyes, and 
lymph nodes. The genome of F. tularensis has been sequenced, and ~16% of the proteome is 
still uncharacterized. Characterizations of these proteins are essential to find new drug targets 
for better therapeutics. In silico characterization of proteins has become an extremely important 
approach to determine the functionality of proteins as experimental functional elucidation is 
unable to keep pace with the current growth of the sequence database. Initially, we have 
annotated 577 Hypothetical Proteins (HPs) of F. tularensis strain SCHU4 with seven 
bioinformatics tools which characterized them based on the family, domain and motif. Out of 
577 HPs, 119 HPs were annotated by five or more tools and are further screened to predict their 
virulence properties, subcellular localization, transmembrane helices as well as physicochemical 
parameters. VirulentPred predicted 66 HPs out of 119 as virulent. These virulent proteins were 
annotated to find the interacting partner using STRING, and proteins with high confidence 
interaction scores were used to predict their 3D structures using Phyre2. The three virulent 
proteins Q5NH99 (phosphoserine phosphatase), Q5NG42 (Cystathionine beta-synthase) and 
Q5NG83 (Rrf2-type helix turn helix domain) were predicted to involve in modulation of 
cytoskeletal and innate immunity of host, H2S (hydrogen sulfide) based antibiotic tolerance and 
nitrite and iron metabolism of bacteria. The above predicted virulent proteins can serve as novel 
drug targets in the era of antibiotic resistance. 
 
Keywords: Domains; Drug target; Virulence factor; Annotation; Microbial resistance; 
Bioinformatics 

 
 

INTRODUCTION 
 
Francisella tularensis, which was first accidentally discovered in 1911, is the causative 

agent of tularemia and is considered a dangerous potential biological weapon. This bacterium is 
a small facultative, aerobic, non-spore-forming, non-motile intracellular pathogen that mainly 
replicates in macrophages [1]. The pneumonic form of tularemia is life-threatening and can 
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result in death. According to the Centers for Disease Control and Prevention (CDC), 
F.tularensis is a viable biological warfare agent due to its high infectivity, ability to cause death, 
and low infectious dose [2]. The family Francisellaceae includes three species in the genus 
Francisella and four subspecies of F. tularensis. Although all have been associated with human 
disease, only the tularensis and holarctica subspecies of F. tularensis are relatively common 
[3]. F. tularensis is covered by a capsule that is required for virulence [4,5]. Recently, the 
presence of Pili (type 4) has been observed which may be the cause of the virulence of the 
bacteria [6]. F. tularensis has been reported in birds, reptiles, fish, invertebrates, and mammals, 
including humans. It is caused by contact with infected animals or vectors such 
as ticks, mosquitoes, and deer flies which makes it a dangerous and highly infectious agent for 
biological warfare [7-10] 

The genome of F. tularensis strain SCHU4 has been sequenced. Its 1.89 Mb base pair long 
genome with 1910 total genes is contained in only one chromosome. Approximately 83% of the 
genome is coding which codes about 1667 proteins. Out of these coding proteins, 577 (~16%) 
are hypothetical proteins (HPs), i.e., there is no experimental evidence regarding the proteins' 
function and structure, implying that these proteins are yet to be annotated [11, 12]  

Due to the advancements in sequencing technologies, a large amount of protein sequence 
data is generated that needs to be annotated or characterized but still a significant proportion is 
demarcated as hypothetical. To keep pace with the exponential growth of sequence data, 
computational approaches play an important role in deciphering the function of HPs that reduce 
the laborious experimental protocols [13, 14]. These approaches are important for understanding 
species-specific pathogenicity, new target identification, pathway associations, and evolutionary 
processes [15-17]. 

In-silico approach has been successfully applied previously to various species like 
Mycobacterium tuberculosis, Streptococcus Gordonii, Vibrio cholera, Staphylococcus aureus, 
Haemophilus influenza, Shigella flexneri, Exiguobacterium antarcticum strain B7, Neisseria 
gonorrhoeae and Chloroflexus aurantiacs [18-26]. 

Hence, considering the bacterium's pathogenicity and the need to discover a new drug target 
in the era of antimicrobial resistance, we have computationally annotated uncharacterized 
proteins of F. tularensis strain SCHU4 using various bioinformatics tools. The study also 
identified the most virulent proteins from 577 HPs that can serve as novel drug targets.  

 
 

MATERIALS AND METHODS 
 
Data Retrieval: In this study, hypothetical proteins of F. tularensis strain SCHU4 were 

retrieved from UniprotKB (https://www.uniprot.org/) [27]. Out of the total 3,733 proteins of F. 
tularensis, 577 were uncharacterized proteins. The computational workflow used for this study 
has been illustrated in Figure 1. 

 
Functional annotation and filtration of HPs: To assign biological function to HPs is a 

major obstacle and a challenging task, we have used various databases and tools for functional 
annotation including CDD (Conserved Domain Database) (https://www.ncbi.nlm.nih.gov/ 
Structure/cdd/wrpsb.cgi) [28], SMART (Simple Modular Architecture Research Tool) (http:// 
smart.embl-heidelberg.de/) [29] CATH (Class, Architecture, Topology, Homology) (https:// 
www.cathdb.info/) [30], PROSITE (https://prosite.expasy.org/) [31], Pfam (http://pfam. 
xfam.org/) [32], InterPro (https://www.ebi.ac.uk/interpro/) [33] and SVMProt (https://bio.tools/ 
svm-prot) [34]. CDD, SMART, and PROSITE were used for identification of conserved 
domains, and CATH was used to classify the domains within a structural hierarchy. Pfam, 
SVMProt, and InterPro were used to classify the HPs into functional families based on 
similarity. We have selected only those HPs for further analyses, which were annotated by five 
or more tools out of seven (i.e.75% annotation criteria,). To validate our initial annotation result 
we have further used MOTIF (https://www.genome.jp/tools/motif/) [35], SUPERFAMILY 
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(https://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/) [36], PROTONET (http://www.protonet. 
cs.huji.ac.il/) [37] to classify the HPs into functional families. The MOTIF assigns function to 
the HPs by aligning with the profile generated from multiple sequence alignment while 
ProtoNet is based automated hierarchical clustering that rely on all against all BLAST (Basic 
Local Alignment Search Tool) similar search and map HPs into an existing clustering and 
SUPERFAMILY predict domain in HPs based Structural Classification of Proteins (SCOP) 
database hierarchy at superfamily level that groups together the most distantly related domains 
[35-37]. Details of analysis were given in supplementary Tables S1 and S2. 

 
 

 
Figure 1: Flowchart of Methodology 
 
 
Prediction of physicochemical parameters and subcellular location: For physiochemical 

parameters prediction ProtParam (https://web.expasy.org/protparam/) was used. We retrieved 
various physicochemical properties of the protein parameters i.e. .molecular mass, theoretical 
isoelectric point (pI), amino acid composition, atomic composition, extinction coefficient, 
instability index, aliphatic index, and grand average hydropathy (GRAVY) [38]. 

To determine the subcellular localization we used three predictors; CELLO, PSLpred, and 
PSORTb. CELLO (subcellular LOcalization predictor)  (http://cello.life.nctu.edu.tw/), a two-
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level support vector machine to predict the subcellular locations [39]. On the other hand, 
PSLpred (https://webs.iiitd.edu.in/raghava/pslpred/submit.html) relies on SVM method [40] and 
PSORTb (https://www.psort.org/psortb/) combine experimental and computational prediction 
for prediction of subcellular locations of HPs [41]. TMHMM (http://www.cbs.dtu.dk/services/ 
TMHMM/) [42], HMMTOP (http://www.enzim.hu/hmmtop/html/submit.html) [43] and SignalP 
(http://www.cbs.dtu.dk/services/SignalP/) [44] were used to determine the transmembrane 
helices and signal peptide in HPs. 

 
Prediction of virulence factor: Virulence factor analysis was done by VirulentPred 

(http://203.92.44.117/virulent/submit.html), a SVM-based tool that calculates potential virulent 
proteins and use five-fold cross-validation technique. We have selected default threshold value 
i.e. 0.0 and score from 0.0 to 1 predict the protein as virulent and minus score indicate non-
virulent protein [45]. 

 
Protein-protein interaction prediction and tertiary structure prediction: STRING 

(Search Tool for the Retrieval of Interacting Genes/Proteins) (https://string-db.org/) database 
was used to predict the protein-protein interactions of the virulent HPs [46]. Among 66 HPs, we 
have selected only those proteins which were associated with other known proteins with high 
confidence score. STRING provides a functional link between proteins called networks along 
with their scores. 

Furthermore, we have determined the 3D structure of those proteins that possess 
interactions with known proteins with a high confidence score. To predict the protein structure, 
which is more conserved than protein sequence, we use a protein homology/analogy recognition 
engine (Phyre 2) (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) that gather 
homologous sequences against query protein and then scanned against HMM database of known 
protein structure [47, 48]. The structure evaluation was performed by Procheck using SAVES 
v6.0 server (https://saves.mbi.ucla.edu/) that analyzes the number of residues falling in the 
allowed region in the Ramachandran Plot as a measure of quality [49]. 

 
 

RESULTS  
 
We have extensively analyzed 577 HPs of F. tularensis using various bioinformatics tools, 

i.e., CDD, Pfam, SMART, PROSITE, InterPro, CATH, and SVMProt, for domain and/or 
functional prediction. If the same function is assigned for HPs by five or more tools, then only 
those HPs were selected for further annotation. Using this strategy, we have identified 119 HPs 
out of 577. These 119 HPs are further analyzed by using Motif, Superfamily, and Protonet for 
protein family characterization and were classified as 38 enzymes, 66 binding proteins, 7 
receptors, 8 transport proteins as given in Fig. 2 and supplementary Table S2. 

Protoparam was used for the prediction of various physiochemical parameters of the filtered 
119 proteins. These parameters were molecular weight, aliphatic index, instability index, 
theoretical pI, etc. >40. The instability index of the protein signifies that the protein is unstable. 
We identified 28 proteins whose instability index values were greater than 40. The theoretical pI 
of the HPs lies between 10 and 4. The GRAVY values indicate both hydrophobic (negative) and 
hydrophilic (positive) HPs [50-52]. The Aliphatic Index of the HPs varied between 160 and 59. 
The physicochemical parameters of 119 HPs are listed in supplementary Table S3.  

Subcellular location correlates protein biological function as cell offer different chemical 
environment and interaction [53]. Signal peptides control transport of proteins to target location 
in all organisms [54, 55]. Membrane proteins are involve in signaling between cells, transport 
and energy transduction [42, 43]. Based on the average subcellular prediction results of the three 
tools HPs were located cytoplasm (40%), membrane (39%), extracellular region (18%), and 
periplasm (3%). We have predicted presence of signal peptide sequence in 78 HPs. HMMTOP 
and TMHMM server predicted 65 and 61 proteins as transmembrane helices. These prediction 
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results help to better understanding the new drug target and detail results are mentioned in 
supplementary Table S4. 

 

 
Figure 2: 119 HPs classified into enzymes (38), binding proteins (66), receptors (7) and transport 
proteins (8). 

 
Prediction of virulent protein is important for identification of novel targets and 

understanding the complex virulence mechanism of pathogen [45]. VirulentPred predicted 66 
HPs as virulent with the score ranges from 0.95 to 1 which is a higher score that minimize false 
positive hits (supplementary Table S5). 

Protein-protein interaction network: We have predicted the association of 66 HPs with other 
proteins that can further elaborate the role of HPs. Among the complete set of 66 proteins, 25 
were dropped out as these did not show any significant interactions. The remaining 41 proteins 
are related to the known genes with high confidence. We identified interacting partners involved 
in lipid biosynthesis, signal transduction, transcriptional regulators, iron sulfur binding, 
extracellular signals, and stimuli. Some proteins interacted with the type 4 pilli, which is 
suspected to be the cause of the pathogenicity of F. tularensis [6]. Our study found that out of 
41 proteins, three proteins Q5NH99, Q5NG42, and Q5NG83, had a very high confidence score 
of 98%, 95%, and 89.5%, respectively, with their interacting partner. Q5NG83 interacts with the 
ABC Transporter enzyme, which plays a role in bacterial virulence mainly associated with the 
uptake of nutrients, while Q5NG42 interacts with GMP synthase required for virulence factor 
production and Q5NH99 interact with proteins involved in metabolism [56, 57]. The STRING 
results are shown in Figure 3. 

Phyre2, a web-based server to predict protein structure based on the principle of homology-
based modeling. Query protein is scanned against HMMs proteins of known structure, and top-
scoring alignments are used to construct crude backbone, and then model is corrected by loop 
modeling, and side-chain is added to generate the final model [47, 48]. We have successfully 
generated the three best models with high confidence i.e., Q5NG42 protein with 99.9% 
coverage and 70% confidence, Q5NG83 with 100% confidence and 98% coverage, Q5NH99 
with 100% confidence and coverage. The structures predicted by using Phyre2 were evaluated 
by Procheck to check the quality of the 3D model and more than 90% residues were in favoured 
region of Ramachandran Plot for all the three predicted structure as shown in Figure 4. 
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Figure 3: Protein-protein Interaction Network of Q5NG42, Q5NG83 and Q5NH99 proteins by STRING 
database 

 
 
 

 
 Figure 4: Three-Dimensional structural prediction of (a) Q5NG42, (b) Q5NG83 and (c) Q5NH99 
proteins by Phyre2 and evaluation of structure by Ramachandran plot by SAVES which show score above 
90%. 
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DISCUSSION 

 
Cost-effective sequencing technology has made bacterial genome sequencing affordable to 

several labs world widely [58]. The published bacterial genome consists of a large group of 
hypothetical proteins which must be annotated to understand disease pathogenesis, virulent 
determinants, survival, and propagation. Characterization of HPs by various bioinformatics 
tools may identify potential biomarkers for the screening and diagnostics of diseases as well as 
pharmacological targets to design and discover novel drugs [59]. 

In the present study, we have annotated HPs of F. tularensis by various computational tools 
to predict the function and structure of proteins that can potentially be involved in the toxicity of 
the pathogen. The initial step involved identification of conserved region i.e. domain and motif 
which provide the clue about protein function. We started analysis of 577 HPs using seven 
functional tools and those HPs are selected for further analysis if the result of each HPs is 
predicted by five or more tools i.e.>75% prediction analysis which retrieves 119 HPs. These 
HPs were further annotated for various properties including physicochemical parameters like 
GRAVY index, aliphatic index, pI, Instability index, cellular localization, transmembrane 
analysis, functional analysis, and virulent prediction. We then predicted interacting partners of 
these 66 proteins and based on high confidence score we have selected 3 virulent proteins 
Q5NH99, Q5NG42 and Q5NG83 with 98%, 95% and 89.5% confidence score respectively 
(Table 1).  

Q5NH99 predicted as phosphoserine phosphatase (PSP), a key essential metabolic enzyme 
catalyse the dephosphorylation of phosphoserine to serine and inorganic phosphate and is a 
member of haloacid dehalogenase (HAD) superfamily. PSP have been demonstrated to facilitate 
entry of Porphyromonas gingivalis into host cells by modulating host cytoskeletal architecture, 
innate immune responses, dephosphorylating colicin and NF-κ [60-62]. 
 
 
Table 1: Functional and structural annotation results of virulent proteins: Three virulent proteins 
with their annotated function, virulence score (0.4 is considered as threshold), and Phyre2 structure 
prediction and evaluation score. 

Protein 
ID 

Annotated 
Function 

VirulentPred 
Score 

Final 
Prediction 

Structure 
Modelling 

confidence score 
by Phyre2 

Structure Evaluation 
(percent amino acid residues 

in most favoured region) 

Q5NH99 Phosphoserine 
phosphatase 

1.0016 Virulent 98% 92.7% 

Q5NG42 Cystathionine 
beta-synthase 
 

0.9776 Virulent 95% 90.9% 

Q5NG83 Rrf2-type 
helix turn 
helix domain 

1.0957 Virulent 89.5% 94.3% 

 
 
Q5NG42, a 196 amino acid length was predicted as Cystathioninebeta-synthase (CBS) 

catalyzes a condensation reaction to convert homocysteine to cystathionine. This enzyme also 
produces hydrogen sulfide (H2S) during this catalysis reaction [63]. A number of previous 
studies in bacterial species have revealed that production of H2S provides antibiotic tolerance 
and serve as universal defence mechanism [66-66]. Further supportive evidence was gained by 
study in which the inactivation of CBS leads to decrease in H2S level and hence more 
sensitivity towards antibiotics [67]. Hence, CBS can act as a main target against antibiotic 
resistance in era of antimicrobial resistance (AMR). 

Q5NG83 Rrf2-type HTH domain is a 130 residues long DNA binding, helix-turn-helix 
domain. This domain is present in the proteins that serve as transcription regulators of rrf2 
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family. Usually, these transcription regulators regulate the genes of bacteria that are involved in 
nitrite and iron metabolism.  For instance, in Escherichia coli one the regulator protein, nsR that 
contains Rrf2-type HTH domain regulates the NO (nitric oxide) sensitive transcription and thus 
protects the cell from the NO stress. Similar transcription regulator protein with same role was 
also found in other bacteria such as Bacillus subtilis and Streptomyces coelicolor whereas 
Rhizobium leguminosarum contains a transcription regulator protein rirA which is an iron-
responsive regulator that involved in uptake of iron [68, 69]. 

Our study has predicted virulent proteins that can play a vital role in future therapeutics of 
tularemia. These results need to be analyzed in vitro to verify these results experimentally to 
check the feasibility of these proteins as possible drug targets and their feasibility. These 
proteins can be essential in determining the virulence mechanism as well as act as the keys for 
unlocking the mystery related to the immunity of F. tularensis to antibiotics. By further analysis 
of these proteins, we can also look for binding sites and try to dock leads to these proteins to 
develop a treatment that has a higher efficacy with fewer side effects.  

A recent study by Kumar et al. used pan-genome analysis and genome mining approach to 
explore the diversity of the genus Francisella. The whole-genome sequence comparisons of the 
26 genomes in their study revealed average nucleotide identity (ANI) of 97.0–99.5% for the 
human pathogens strains cluster, whereas ANI values of 74.2–90.4% were found in the strains 
that are mainly related to water and environment [70]. 

Thus the above study shows that there exhibit a good degree of similarity in the coding 
regions of Francisella genomes. Hence, the functional characterization of HPs in our study may 
help in the study of proteins of other strains of Francisella 
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