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A B S T R A C T

Even purified enzyme preparations are often heterogeneous.  For example,
preparations of aspartate aminotransferase or cytochrome oxidase can consist of several
different forms of the enzyme.  For this reason we consider how different the kinetics of
the reactions catalysed by a mixture of forms of an enzyme must be to provide some
indication of the characteristics of the species present.  Based on the standard Michaelis-
Menten model, we show that if the Michaelis constants (Km) of two isoforms differ by a
factor of at least 20 the steady-state kinetics can be used to characterise the mixture.
However, even if heterogeneity is reflected in the kinetic data, the proportions of the
different forms of the enzyme cannot be estimated from the kinetic data alone.
Consequently, the heterogeneity of enzyme preparations is rarely reflected in
measurements of their steady-state kinetics unless the species present have significantly
different kinetic properties.  This has two implications: (1) it is difficult, but not
impossible, to detect molecular heterogeneity using kinetic data and (2) even when it is
possible, a considerable quantity of high quality data is required.

Key words: aspartate aminotransferase, enzyme kinetics, heterogeneity, isozyme.

INTRODUCTION

Proteins are intricate structures, often requiring complex post-translational
modification to generate the mature form, that are eventually recycled [1].
Consequently, even a population of mature molecules can be expected to include both
newly synthesised and older molecules that may exhibit some variation in activity [2,
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3]. For example, an iron-sulphur centre is important in binding citrate by aconitase
(E. C. 4.2.1.3) and therefore in the catalytic function of the enzyme [4], but the
apoprotein is involved in iron-sensing and influences the supply of iron for the synthesis
of the prosthetic group of the mature enzyme [4, 5]. There are many other examples of
the loss of prosthetic groups from enzymes, such as the loss of of pyridoxal 5′-
phosphate from aspartate aminotransferase (E. C. 2.6.1.1) [6], of Mg2+ from the active
site of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco, E. C. 4.1.1.39) [7] or
of CuB from cytochrome bo (E. C. 1.10.3.10) in Escherichia coli grown in a low-copper
medium [8]. In some cases, the loss of a group not necessarily directly involved in the
reaction can modify the kinetics of an enzyme. For example, bovine cytochrome
oxidase usually contains 3-4 molecules of cardiolipin per enzyme molecule and their
removal can alter the kinetics of the enzyme [9].

In addition to the molecular heterogeneity associated with the normal lifecycle of
proteins, variation associated with oligomerisation can be significant. First, some homo-
oligomeric enzymes can comprise different combinations of subunits, which may have
different kinetic properties. For example, various combinations of subunits can be
observed for the tetrameric lactate dehydrogenase (E. C. 1.1.1.27) [10, 11]. This is
distinct from the tissue-specific isoforms of some enzymes in which there is a difference
between tissues, but a single isoform tends to be present in each. Second, some enzymes
may undergo changes in the extent of oligomerisation in response to changes in
conditions. For example, glyceraldehyde 3-phosphate dehydrogenase (E. C. 1.2.1.12) is
monomeric or homotetrameric depending on the conditions and has different kinetics in
the two states [12].

Other factors contributing to the apparent heterogeneity of enzymes include the
presence of more than one isozyme catalysing a single reaction. For example, different
isozymes catalyse the malate dehydrogenase (E. C. 1.1.1.37) and aspartate aminotrans-
ferase reactions in the mitochondria and cytosol [2], distinct from the case of aconitase
in which the same holoenzyme is found in both spaces. In a small number of cases, a
single enzyme catalyses two different reactions using the same substrate. For example,
rubisco can carboxylate or oxygenate the substrate and so the two reactions are
competitive in the presence of both CO2 and O2 [13]. Finally, there are instances in
which enzyme molecules can be associated with other enzymes in multienzyme
complexes or with other intracellular structures.  For example, glutamate dehydrogenase
(E. C. 1.4.1.3) has been reported to be associated with the endoplasmic reticulum [14],
with the lysosomal membrane [15] and even with mRNA [16], and it may be part of a
multienzyme complex [17], and lipase (E. C. 3.1.1.3) is activated on binding to a lipid
interface [18].

The intrinsic heterogeneity of proteins is rarely considered in analyses of enzyme
kinetics, but it prompts several questions, of which we address two. First, how different
do two isoforms have to be to facilitate the identification and characterisation of the
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heterogeneity of a population of enzymes? Second, how might heterogeneity be
detected in the kinetics of an enzyme?

BACKGROUND MATERIALS

The most common description of the kinetics of an enzyme (E) converting a
substrate (S) to a product (P) by way of an enzyme-substrate complex (C) is the
Michaelis-Menten mechanism
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[19], where the kis are rate constants. The rate equation for this reaction when the
concentration of P is negligible is
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where s is the concentration of S, Vmax is the maximum rate of reaction and Km is the
Michaelis constant [20].  The usual statements of this model do not contemplate that the
second step in (1) is reversible, indeed, it is often suggested that it cannot be reversed
which is inappropriate for many biochemical reactions.  Furthermore, it is not possible
for an enzyme catalysing (1) to behave as a Michaelis-Menten enzyme in both
directions [21]. For reasons that will become apparent, we have departed from this
practice, but the standard analysis of (1) does apply when the concentration of P is
negligible, which would preclude any appreciable reverse reaction. There is some
question as to the appropriateness of (1) [22] and more complicated behaviours have
been reported [23].

Constraints on equilibrium constants: Irrespective of the state of the enzyme the
equilibrium constant K of (1) is
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where K1 and K2 are the equilibrium constants of the first and second steps,
respectively, of (1). However, the enzyme-substrate complex (C) may be modifed by
the changing state of an enzyme, because any change affecting the substrate binding site
may alter the rate constants and, therefore, the binding affinity and the catalysis.  In
such cases K1 and K2 may be changed, but K will not. Similarly, the enzyme-substrate
complex (C) is likely to differ between two enzymes even if they catalyse the same
reaction. So, K1 and K2 may vary among the various forms of an enzyme, but any
change in one must be associated with an inverse change in the other.

Both Km and Vmax [20] can be expressed in terms of these equilibrium constants
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and
tt EKkEkV 212max  (5)

where 12  kk and Et is the total enzyme concentration. Of course, Vmax  K2

whereas Km  K2
2, which implies that the latter might be a more sensitive indicator of

the presence of modified enzymes than the former. While both Km and Vmax increase
with K2 (4-5), the catalytic efficiency of an enzyme [24, 25]
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is decreased as K2 rises, consistent with the depletion of the enzyme-substrate
complex [26].

The Vmax of a modified enzyme ( maxV  ) compared with that of the standard enzyme
(Vmax) is
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where it is assumed that  11   kk or 22   kk . Similarly, the corresponding
comparison of the Kms of the same two forms is
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which also implies that  ≤ 2 if  ≥ 1, where equality holds if  = 1. So the relative
catalytic efficiency of the two forms of the enzyme is just
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and using (9)  qqrel  11  , where   11 22  KKq  .

Order of magnitude estimates for some of these parameters can be obtained from the
work of Bar-Even et al. [27] who analysed kinetic data obtained from BRENDA [28].
Based on their analysis, each of k2, Km and  has a roughly lognormal distribution with
median values of 13.7 s-1, 0.13 mM and 1.25 × 105 M-1 s-1, respectively.  Approximately
60% of all reactions had k2 ≈ 1-100 s-1, Km ≈ 0.01-1 mM and  ≈ 103-106 M-1 s-1, but the
real ranges were considerably larger. While these values represent many enzymes from
many species, they do provide some indication of what might be possible.

The simplest case: We consider a mixture of two forms of an enzyme to one of
which (2) applies and the other has modified Vmax and Km. This can be written
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where p is the fraction of molecules in the form with kinetics described by (2).
Using  ≥ 1 (7) and  (8) and letting mKs , the non-dimensional form is
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(Figure 1A) which can be written as the sum of a term that is independent of p and
another that is not
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Figure 1: Kinetics of a mixture of two enzymes (13) and of the two component enzymes (1).  It was
assumed that  = 1 and  = 100, and curves are plotted for p = 1 (– – – – –), p = 0.5 (———) and p = 0
(∙∙∙∙∙∙∙∙).  The vertical dotted line in (B) indicates the value of  at which the second term of dV/d
vanishes (15).  The same values are plotted in (A) and (B), but note the logarithmic scale of the abscissa
in (B).

Of course, the apparent Vmax and Km for the mixture are    naxVpp  1 and, if p =

0.5,  , respectively. The second term can be positive or negative and it vanishes

when    1  if  ≠ 1, and it is always positive if (1 + ) < ( + )/. This
term can cause significant deviation from standard Michaelis-Menten behaviour (Figure
1B). So, at low  V is greater than the first term on the RHS and it may be smaller at
higher  depending on the magnitudes of  and  (Figure 1B). It is clear from the
derivatives of V
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It is apparent from Figure 1B that there is a minimum in dV/ln 
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as  increases.  The depth of minimum in dV/ln  between these peaks () can be
estimated from the difference in the coordinates of the line joining the peaks
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and dV/ln  at the minimum
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(Figure 2A).  If  is less than about 20 there is no trough, but  increases for larger
values of  (Figure 2B). Integration of (13) yields a complex expression for the progress
curve. There is no obvious indication from this that two different forms of the enzyme
are present, irrespective of the magnitudes of ,  or p. It appears that the number of
forms of the enzyme might be more apparent from higher derivatives (14), but this
approach would require a considerable quantity of high quality data.
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Figure 2: The derivative of (13) and the definition of the depth () of the trough (A) and the variation
of  with  (B).   In (A),  = 1,  = 100 and p = 0.4, and the derivative (———) and f() (∙∙∙∙∙∙∙∙) are
given by (16) and (19), respectively. In (B),  = 1 and p = 0.5, and  is given by (20).

A common approach to the analysis of kinetic data is to linearise (2) by
transforming the data. While transformation introduces bias into parameter estimates, it
might be helpful here. Arguably, the most reliable of the transformation is the Eadie-
Hofstee transform [29]. Applying this to (12) yields curves that are distinctly nonlinear
(Figure 3). Even in this case, however,  must exceed about 20 for the kinetics of the
two forms of the enzyme to be apparent. However, the curves shown in Figure 3 could
also arise from a single isozyme with non-Michaelis-Menten kinetics [23].

Figure 3. An Eadie-Hofstee plot of (13) for several values of .  In each case  = 1
and p = 0.5.

Figure 3: An Eadie-Hofstee plot of (13) for several values of .  In each case  = 1 and p = 0.5.
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The general case: If there are several forms of an enzyme, whether because of
differences in age, oligomerisation, history or exposure to effectors, then (13) can be
extended to
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
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i i

i
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, (21)

where ipi = 1 is a distribution function and i and i are dimensionless multiples of
the smallest Vmax and its associated Km, respectively,  so 1 = 1 = 1 and i ≥ 1 for i > 1.
As for the simple model, pi and i are confounded unless the pi can be varied.

The derivatives of (21) are just
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so there is an oscillation associated with each i, analogous to those shown for the
simplest case in Figures 1B and 2.  For a mixture of n isozymes the limiting value of V

is just the weighted average  
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i iip
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apparent Km but we conjecture that it is related to the weighted geometric mean
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Application to aspartate aminotransferase: Aspartate aminotransferase catalyses
the reversible transfer of an amino group from aspartate to -ketoglutarate to yield
glutamate and oxaloacetate. Isozymes are present in both the mitochondrial matrix and
in the cytoplasm and it has been reported that there are several isoforms of the enzyme
in each of the subcellular spaces [2, 30-32]. Consequently, even a purified preparation
of one of the isozymes can be heterogeneous.

Even considering just one of each of the cytoplasmic and mitochondrial forms of the
enzyme (and ignoring the isoforms of each of them), it is unlikely that a mixture of
them could be detected using kinetic data. The kinetic properties of mitochondrial and
cytoplasmic isozymes from rabbit liver [33] are shown in Table 1. Clearly,  ≈ 1, as we
have assumed (although this need not always be the case), and, while  = 23 for -
ketoglutarate, it is 0.49 for aspartate. It might just be possible to detect contamination of
the two isozymes from an Eadie-Hofstee transformation of the activity dependence on
the concentration of -ketoglutarate (Figure 3), but this would require a significant
quantity of high quality data. It would not be possible by varying the concentration of
aspartate (Figures 2B and 3). Since the kinetics of the isoforms that we have not
considered are even more similar to each other than are those of the cytoplasmic and
mitochondrial isozymes [32], there is little likelihood of observing any indication of this
heterogeneity in the kinetic data.
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RESULTS AND DISCUSSION

While considerable emphasis is placed on working with purified enzymes, even the
most carefully prepared enzymes are likely to be hetereogeneous. For example,
cytochrome oxidase (E. C. 1.9.3.1) preparations often contain at least two forms [3] and,
as we have pointed out, there are several isoforms of aspartate aminotransferase in both
the mitochondria and the cytoplasm [2, 30-32]. We have shown that the heterogeneity is
not apparent from the kinetics of the enzyme unless i > 20. In practice, separating pi

from i is impossible unless the proportions can be varied or one of the is is known.
Consequently, molecular heterogeneity may often be ignored with the result that (2) is
used when (21) might be more appropriate. In effect, this represents a problem of
estimating the number of isoforms, their proportions and the set of parameters
characteristic of each. The statistical problem [34] is not trivial and it requires a
considerable quantity of high quality data.

We have considered the simplest case for two isozymes (11) and a more general
case (21), a form of which was contemplated, but not analysed, by Haldane [35]. The
simplest case (11) has previously been applied to cytochrome oxidase [36], although no
consideration was given to the value of p, despite strong evidence that there are at least
two forms of the enzyme [3]. More complicated expressions have also been developed
to describe the kinetics of cytochrome oxidase [37] to account, in part, for the molecular
heterogeneity.

While it is likely that most, if not all, preparations of an enzyme are heterogeneous,
whether as a result of the presence of a mixture of lifecycle stages, of isozymes or other
forms, it is rarely explicitly considered. Consequently, the impact of the mixture on the
kinetics tends to be ignored. We have shown that this is probably reasonable unless  >
20, but it does highlight the point that the purity of an enzyme preparation is relative. It
might be possible to work with a truly homogeneous preparation in some cases, but in
other circumstances a mixture may be the only material available. This prompts one to
ask just how many different forms are acceptable and whether there are some forms that
might render a mixture unacceptable when it is not possible to identify the heterogeneity
from the kinetics alone.
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