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A B S T R A C T 
 
The present study was conducted to find the effect of three heavy metals, Ag, Hg 

and Pb on the expression level of a gene encoding plasma membrane H+-ATPase in 
Aeluropus littoralis. The experiment was laid out in a completely random design with 
three replications. The expression of the main gene was normalized to the expression of 
the housekeeping gene actin. Two 259 and 187 bp fragments were amplified from 
plasma membrane H+-ATPase and actin genes using specific primers in polymerase 
chain reactions. The results indicated that higher concentrations of all three heavy 
metals declined the expression of plasma membrane H+-ATPase gene, whereas low 
concentrations changed the level of its transcript differently. A significant linear 
correlation was found between Ag concentrations of Aeluropus littoralis shoots and its 
external level; however, for Hg and Pb no correlations were observed. Root weight 
decreased when plants were grown at both concentrations of Ag and Hg but increased at 
both concentrations of Pb and NaCl. Maximum root weight was observed under lower 
levels of Pb, while maximum shoot weight was observed under lower levels of Hg. The 
greatest plant weight was obtained at low concentrations of Hg and Pb. Taken together 
these results show the regulation of plasma membrane H+-ATPase gene by heavy metals 
suggesting that Aeluropus littoralis can be regarded as a Phytoremediation accumulator 
of soils polluted with heavy metals.   
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INTRODUCTION 
 
Heavy metals, such as lead, mercury, and silver, are a group of metals which have 

densities greater than 5 grams per cubic centimeter [1]. The concentration of these 
metals in the soil varies from one area to another [2, 3]. The fate of heavy metals in soil 
and water depends on environmental conditions. Many factors such as ionic 
concentration, pH, temperature and organic or inorganic ligands affect the uptake of 
metals by plants [4]. 

Some metals such as Zn are essential while others such as Cd are not, but previous 
research shows that heavy metals are toxic at high concentrations anyway [5]. Studies 
have revealed that the toxicity of heavy metals can be a result of oxidative damage by 
the generation of reactive oxygen species (ROS) [6]. It has also been shown that heavy 
metals can be connected to water channel proteins, leading to the closure of stomata in 
the leaves of plants and stopping water flow [7].  

When cells are exposed to heavy metals, plasma membrane (PM) is the first barrier 
to the movement of metal ions into the cytoplasm [8]. Metals have been known to cause 
damage to plasma membranes. Metal ions bind to sulfhydryl groups of proteins and 
hydroxyl groups of phospholipids [9]. They can also replace calcium ions in cell 
membranes and disrupt the ionic balance of the cell plasma membrane [10].    

H+- ATPases are a major species of plasma membrane proteins that plays important 
roles in various physiological activities of the plant like abiotic stress response. These 
proteins use the energy provided by ATP hydrolysis to transport protons out of the cell, 
generating an electrochemical gradient across the membrane [8, 11].  

Previous studies indicated that the expression pattern of various genes in different 
organisms changed after exposure to heavy metals [12, 13]. Some reports also show that 
heavy metals differently affect gene expression patterns in plants [14, 15]. The 
expression level of PM H+-ATPase gene was also found to have changed under heavy 
metals' stress. It has been reported that the expression of a gene encoding PM H+-
ATPase in cucumbers was down-regulated by cadmium treatment [16]. Nevertheless, 
one report showed that the expression level of proton pump did not change under the 
stress of heavy metals such as Cd, Cu and Ni [17].   

As a rich genetic resource used for identifying new genes resistant to abiotic stress, 
Gouan, Aeluropus littoralis, is a diploid plant (2n = 2x = 16) with a relatively small 
genome of about 342 Mbp [18]. The biochemical response of A. littoralis to some heavy 
metals has been previously studied [19, 20]. Other genes that play important roles in the 
absorption and translocation of heavy metals have also been studied in this plant before 
[21]. It was shown that genes encoding PM H+-ATPase are one of the genes that have 
an active role in removing heavy metal ions from cytosol [22]. 

As of date, little research has been done to determine the expression pattern of the 
PM H+-ATPase gene under some heavy metal stress in some plants and to the authors' 
knowledge, no research has been carried out to study the expression level of this gene 
under Ag, Hg or Pb stress. Hence, in the present work we tried to analyze the expression 
pattern of a gene which encodes a PM H+-ATPase pump in A. littoralis and determine 
its relation with metal ion contents of the shoots under these heavy metals' stress. 
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MATERIALS AND METHODS 
 
Cultivation of plants and experimental design: A. littoralis seeds were collected 

from Maharlu Lake, south of Shiraz, surface sterilized by soaking in 1% (v/v) sodium 
hypochlorite for 20 min and rinsed three times with distilled water. In order to get more 
uniformly germinated seeds, they were placed in Petri dishes on two layers of filter 
paper moistened with 10 ml distilled water and incubated at 4°C for 72 h. Germinated 
seeds were planted in plastic pots filled with perlite and grown in a greenhouse under a 
16/18 h day/night cycle and 25/16°C day/night temperature. Plants were irrigated every 
three days with 1/2 modified Hoagland solution [23]. After two months, the plants were 
treated with 1/2 modified Hoagland solution with two different concentrations (50 and 
100 µl) of AgNO3, HgCl2, Pb(NO3)2 and 200 or 400 mM NaCl, separately. The 
experiments were carried out in a completely randomized design with 3 replicates.  

 
Measurement of plant heavy metal content: Heavy metal content was measured 

as previously described [24]. Leaves were separated 72 h after treatment, washed and 
dried in an oven at 65ºC for 72 h and weighed. After drying, one gram of each sample 
was placed into a porcelain crucible and heated in a furnace. The furnace temperature 
slowly increased from room temperature to 550ºC in 1 h. Samples were ashed for 3 h. 
The residue was dissolved in 5 ml HCl (2 N) and the total volume was adjusted to 50 ml 
by adding distilled water. The metal content was then analyzed by atomic absorption 
spectroscopy. 

 
RNA extraction, preparing cDNAs: Leaves were sampled 0, 6, 48 and 72 h after 

treatment, frozen in liquid nitrogen and stored at -80°C until used for RNA extraction. 
Total RNA was extracted from leaves using GF-1 Total RNA Extraction Kit (Vivantis, 
Malaysia). The quality of the extracted RNA was assessed by electrophoresis on 1% 
agarose gel. First-strand cDNAs were prepared from 1 µg total RNA by RevertAid M-
MuLV reverse transcriptase (Fermentas, Germany) with oligo (dt) primer.  

 
PCR reactions: The expression pattern of PM H+-ATPase gene was investigated in 

the leaves by semiquantitative RT-PCR. The cDNAs were amplified by specific primers 
(Table 1) for genes, encoding PM H+-ATPase as the target and the actin as reference 
genes. PCR reactions in a final volume of 25 µl reaction mixture containing 10 mM tris-
HCl (pH 8.3), 50 mM KCl, 1.5 MgCl2, 200 µM dNTPs, 1 µl diluted cDNAs, 0.3 µM of 
each primer and 1 unit taq DNA polymerase were carried out under the following 
conditions: 5 min at 95 °C, followed by 28 one minute cycles at 95°C, 30 s at 60°C, and 
1 min at 72°C, with a final extension step of 7 min at 72°C. The PCR product was then 
separated on 1% agarose gel. 

 
Statistical analysis: The experiments were repeated three times. Data in tables and 

figures represent mean values. All data were analyzed by analysis of variance 
(ANOVA) procedures using SAS (version 9.3). Treatment means were separated by 
Duncan's multiple range test (P<0.05). 
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Table 1: The sequences of primers used to amplify the genes encoding a plasma membrane H+-
ATPase (target gene) and actin as reference gene in PCR 

 
RESULTS AND DISCUSSION 

 
The effects of different concentrations of various heavy metals and NaCl on shoot 

and root weight are shown in Table 2. The results showed that heavy metals differently 
affected the weight of the plants. Root weight increased under Pb and NaCl treatments 
as compared to the control and the increment was greater in low levels, but Hg and Ag 
had no significant effect. Maximum weight was observed under lower levels of Pb (50 
µM) which could probably be due to the immobilization of lead and its accumulation in 
roots. Reduced root weight was noticed when plants were grown at high concentrations 
of Pb (Table 2). This could be related to the potentially devastating effect of high 
concentrations of Pb (100 µM) on plant cells which leads to the reduction of the roots' 
growth rate. Pb has also been reported to have a major effect on membrane stability in 
safflower [25]. Reductions of root growth rate with increasing external Pb supply levels 
in other plants have also been reported [26]. 

 
Table 2: The weight of shoot and root of A. littoralis plants under different heavy metals and NaCl 
treatments 

Treatment (mM) Root  weight (g) Shoot weight (g) Plant  weight ((g) 

Control 0.011d 0.060bc 0.071bcd 
Ag (0.05) 0.007de 0.047cd 0.054de 
Ag (0.10) 0.005e 0.033d 0.038 e 
Hg (0.05) 0.009de 0.122a 0.131a 
Hg (0.10) 0.007de 0.058bc 0.065 cd 
Pb (0.05) 0.049a 0.075b 0.124a 
Pb (0.10) 0.022c 0.049cd 0.071bcd 

NaCl (200) 0.028b 0.060bc 0.088  b 
NaCl (400) 0.024c 0.058bc 0.082bc 

Note: Means in each column with the same alphabets are not significantly different at the 5% level 
using Duncan's multiple range test.  

 
As compared with the control, the increase in shoot fresh weight was statistically 

significant at an Hg supply level of 50 µM; however, no significant increment was 
observed in other treatments even at high levels of Hg (Table 2). In response to Ag 
treatment, shoot and root weights decreased as compared with the control and this 
decrease was significant at high Ag concentrations (Table 2). These results are 

Genes Name of 
Primer 

Sequence TM (°C) 

Target gene 
PMH1RTPF 5'- ACCTGAGAAGACCAAGGAGTCT-3' 62.15 

PMH1RTPR 5'- TACAGGAAGTGCTTCAAGTGTAG-3' 60.00 

Actin gene 
ActinAlF 5'- CGTACAACTCCATCATGAAGTG-3' 61.96 

ActinAlR 5'- CAAACACTGTACTTTCTCTCCG-3' 60.35 
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consistent with those of Brandt et al. (2005) who showed that lettuce growth was 
negatively affected by silver [27]. NaCl treatment increased the root weight in both 
levels, the increment being greater at the high level (400 mM). NaCl is found to have 
increased plant weight in halophytic plants such as Salvadora persica [28]. It has been 
showed that the weight of halophyte Cynara cardunculus roots increased for plants 
growing in NaCl but not for those grown in KCl [29]. This indicates that high external 
NaCl is less toxic than KCl for halophytic plants. They also reported that the deleterious 
effect of salts on growth was more evident in shoots than roots. Our results also show 
that NaCl did not increase the weight of shoots in A. littoralis, although it significantly 
increased the weight of roots in both levels (Table 2).      

The heavy metals' contents of shoots in the plants treated with Pb, Ag and Hg 
significantly increased, as compared with the control. Generally, the metal 
concentration in the shoot of the plants under different treatments was in the descending 
order of Ag>Pb>Hg. The Ag content in the shoot of A. littoralis increased with 
increasing external Ag supply levels, whereas no difference was found between the two 
supply levels of Hg and Pb (Table 3). Ag concentration increased in the shoot of Ag-
treated plants by more than seven times in comparison to the control. A significant 
linear correlation was found between the Ag concentrations in the shoots of A. littoralis 
and the external Ag supply level (Table 3). 

RNA quality was assessed by electrophoresis on 1% agarose gel. The 
OD260/OD280 ratio of extracted RNA was 1.9 and the bands corresponding to 18S and 
28S rRNA were distinctly visible on the gel, indicating high quality and non-degraded 
RNA (Fig. 1). 

 
Figure 1: Total RNA extracted from leaves of A. littoralis was separated by 1% agarose gel 
electrophoresis and stained with ethidium bromide. 1) Total RNA extracted from sample and 2) 
size marker λ/StyI.  
 
 
RT-PCR is a powerful technique to evaluate the quality of RNA samples, because it 

is sensitive to the degradation of RNA or to the presence of inhibitors in the reaction. 
Hence, cDNAs prepared from RNA were used as template in a PCR reaction to test 
RNA quality. Two fragments with lengths of 187 and 259 bp were amplified with 
specific primers for actin and PM H+-ATPase genes respectively, which indicated the 
high quality of the prepared cDNAs. 
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Table 3: Contents of Ag, Hg and Pb in shoot of  Aeluropus littoralis exposed to different 
concentrations of heavy metals. 

Note: In each column with the same alphabets are not significantly different at the 5% level using 
Duncan's multiple range test.  

 
Treatment of gouan plants with heavy metals (Ag, Hg and Pb) significantly affected 

the expression levels of PM H+-ATPase. The effect of high concentrations of Ag, Hg 
and Pb was similar, and all heavy metals in high external supply levels decreased the 
expression level of PM H+-ATPase (Fig. 2-4), whereas a high level of NaCl(400 mM) 
increased the expression level of this gene after 72 h (Fig. 5). Our results are consistent 
with those of Janicka- Russak et al. (2008) who reported that high concentrations (100 
µM) of Cd decreased the expression of CsHA3, a gene encoding a PM H+-ATPase in 
Cucumis sativus, whereas the transcript level of the CsHA3 gene in plants treated with 
low concentrations  of Cd (10 µM) was similar to the control [16]. 

The expressions of the PM H+-ATPase gene in plants treated with low 
concentrations (50 µM) of all three heavy metals were significantly higher than plants 
treated with high concentrations. Low concentrations of Ag caused the significant 
increment of PM H+-ATPase gene expression after 6, 48 or 72 h (Fig. 2). On the other 
hand, plant weight significantly decreased in plants treated with low concentrations (50 
µM) of Ag in comparison to the control (Table 3). In addition, Ag concentration 
increased in the shoots of plants treated with Ag more than other heavy metals. It can be 
suggested that Ag stimulated the expression of the PM H+-ATPase gene under low 
concentrations of external Ag supply, but higher concentrations caused the distinct 
inhibition of the PM H+-ATPase transcript. 

 

 
Figure 2: Semiquantitative analysis of the expression level of plasma membrane H+-ATPase gene, 
main gene, in the shoot of A. littoralis exposed to Ag (normalized by the level of actin gene, as a 
reference gene). 1, 2 and 3) samples were harvested from plants treated with 50 µM Ag after 6, 48 
and 72 h, respectively. 4, 5 and 6) samples were harvested from plants treated with 100 µM Ag 
after 6, 48 and 72 h, respectively. C) Sample was harvested from control plants. 

Hg levels Hg uptake 
(mg kg-1) Ag   levels Ag uptake 

(mg kg-1) Pb  levels Pb uptake 
(mg kg-1) 

Control 38b Control 610c Control 48b 
50 (µM) 60 a 50 (µM) 2290 b 50 (µM) 122 a 
100 (µM) 68 a 100 (µM) 4330 a 100 (µM) 126 a 
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In low concentrations, the accumulation of PM H+-ATPase gene transcript in Pb-

treated plants decreased and reached a minimum at 6 h but increased afterwards from 6 
h to 72 h (Fig. 3). It has been previously reported that the expression of some genes 
increased in response to Pb treatments in Arabidopsis thaliana [30]. These studies 
showed that some gene encoding enzymes that were involved in sulfur assimilation, 
GSH metabolism, indol-3-acetic acid and jasmonic acid biosynthesis were up-regulated, 
and that these pathways were linked, through signaling transduction, to biosynthesis 
metal detoxification and transport molecules [30]. Moreover, it has been shown that the 
expression of AtPDR12, a gene encoding an ABC transporter in A. thaliana, increased 
in response to Pb treatment and that AtPDR12 contributes to the resistance of 
Arabidopsis to Pb [31]. It can be suggested that like ABC transporters, PM H+-ATPase 
contributes to the resistance of plants to Pb by pumping or regulating the transport of Pb 
or Pb-related toxic compounds to the exterior of the cell. 

In the case of Hg, the expression level of PM H+-ATPase decreased in the shoots for 
a short time, increased after 48 h, and decreased again after 72 h (Fig. 4). It has been 
previously reported that the levels of RNA, DNA and protein were affected in HgCl2 
treated cells [32], while the effect of Hg on gene expression in plant cells has not been 
reported yet. 

Although many studies have shown changes in the gene expression of PM H+-
ATPase in response to a variety of environmental factors, including drought, salt and 
mechanical stress [33, 34], to our knowledge, data concerning the effect of heavy metals 
on the PM H+-ATPase expression is very limited and no study has yet reported the 
effect of Ag, Hg or Pb on the gene expression of this pump. 

 
 
 

 
Figure 3: Semiquantitative analysis of the expression level of plasma membrane H+-ATPase gene, 
main gene, in the shoot of A. littoralis exposed to Pb (normalized by the level of actin gene, as a 
reference gene). 1, 2 and 3) samples were harvested from plants treated with 50 µM Pb after 6, 48 
and 72 h, respectively. 4, 5 and 6) samples were harvested from plants treated with 100 µM Pb 
after 6, 48 and 72 h, respectively. C) Sample was harvested from control plants.   
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Figure 4: Semiquantitative analysis of the expression level of plasma membrane H+-ATPase gene, 
main gene, in the shoot of A. littoralis exposed to Hg (normalized by the level of actin gene, as a 
reference gene). 1, 2 and 3) samples were harvested from plants treated with 50 µM Hg after 6, 48 
and 72 h, respectively. 4, 5 and 6) samples were harvested from plants treated with 100 µM Hg 
after 6, 48 and 72 h, respectively. C) Sample was harvested from control plants. 
 
 

 

 
Figure 5: Semiquantitative analysis of the expression level of plasma membrane H+-ATPase gene, 
main gene, in the shoot of A. littoralis exposed to NaCl (normalized by the level of actin gene, as a 
reference gene). 1, 2 and 3) samples were harvested from plants treated with 200 mM NaCl after 6, 
48 and 72 h, respectively. 4, 5 and 6) samples were harvested from plants treated with 400 µM 
NaCl after 6, 48 and 72 h, respectively. C) Sample was harvested from control plants. 
 
 

 
Taken together, the results showed that with the exception of Pb and Hg at low 

concentrations, heavy metals reduced the weight of plants, while NaCl increased fresh 
weight at both concentrations. The shoots of gouan did not accumulate heavy metals 
with similar efficiency. A significant linear correlation was found between the 
concentration of Ag in the shoots of A. littoralis and that of the external supply level, 
while in the case of Hg and Pb no correlation was observed. The expression level of the 



 
 
 
 
 

Jam  et  al. /Mol Biol Res Commun 2014;3(2):129-139                                                                          MBRC 

http://mbrc.shirazu.ac.ir 
137  
  
  
  
  
  
  

PM H+-ATPase gene was changed by 50 µM Ag, Hg and Pb but decreased with high 
levels of these heavy metals.  

The results indicate that A. littoralis can accumulate exceptional concentrations of 
Pb in its root without showing toxicity symptoms. Plant species, belonging to the 
accumulator class, have exhibited higher tolerance to excessive levels of Pb in the 
growth media [35]. Hence, A. littoralis may be introduced as an accumulator for this 
metal. 
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