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ABSTRACT 
 

In the recent years deregulation for microRNAs expression pattern have emerged as 

a possible molecular factor for carcinogenesis. It has been reported that the expression 

of miR-9 was down-regulated in human gastric adenocarcinoma. To figure out the 

molecular mechanism of this down regulation, the methylation status in promoters of 

miR-9 family loci were compared in the human gastric adenocarcinoma samples with 

their normal margins. Using a methylation specific PCR technique the methylation 

status of miR-9 family loci were compared between 30 pairs of primary human gastric 

adenocarcinoma samples with their normal margins. The methylation of miR 9-1 status 

showed no specific difference in promoter methylation pattern in tumor and normal 

specimens, while in the miR-9-2 locus were unmethylated in both types of tissues. The 

promoter of miR-9-3 locus seems to be specifically methylated in tumor and their 

normal margin tissues. Our data revealed methylation of these CpG islands were not 

meaningfully different between normal and tumor gastric adenocarcinoma specimens 

and the methylation status of promoter may not be able to account for alteration of miR-

9 expression in this type of gastric cancer.  
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INTRODUCTION 

 
Gastric cancer is the forth-commonest malignancy in the world. Over 95% of 

malignancies of the stomach are adenocarcinomas [1]. Previous studies have revealed 

that deregulation in some microRNAs gene expression is related to gastric cancer 

development or progression [2-4]. MicroRNAs (miRNAs) are evolutionary conserved, 

small single-stranded noncoding RNAs between 18-25 nt in length that synthesized in 
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the nucleus by a RNA polymerase II, via several intermediates by cleavage of much 

longer hairpin-shaped precursor (70-100 nt) transcripts. miRNAs are among small 

noncoding RNAs that regulate target gene expression through an almost perfect pairing 

mainly with 3’ untranslated regions (UTRs) of target mRNAs, inducing direct mRNA 

degradation or mediate post-transcriptional gene silencing [5-6]. 

Recently it is shown that miRNAs have critical role in development, proliferation 

and apoptosis, as well as, involvement in the pathogenesis of many human diseases and 

cancers.  Interestingly, it is shown that in human cancers miRNAs expressions differ 

between normal and tumor tissues, as well as, different tumor types [7-8]. It has been 

suggested that down-regulation of some miRNAs gene expression in tumors in 

comparison with their normal tissues demonstrated their putative tumor suppressor roles 

[7-10]. Epigenetic mechanisms including DNA methylation and histone modifications 

are involved in miRNAs genes expression and regulation [11-14]. 

miR-9 is one of the conserved microRNAs among different organisms found in 

insects to mammals. In human, Hsa- miR-9 is transcribed from three genomic loci 

including 1q22 (miR-9-1), 5q14.3 (miR-9-2) and 15q26.1 (miR-9-3). In transcription, 

these three loci produce different hairpin precursors but they have same mature 

sequences in the final processed form. The promoters of these loci are embedded in 

CpG islands. It has been shown that this miRNA has a tissue-specific expression pattern 

in neuronal tissues, in normal condition to regulate their normal development [15-19]. 

Deregulation of miR-9 genes expression are involved in pathogenesis of some important 

human diseases such as cancer in colorectal, gastric, breast, non-small cell lung and 

even cardiac hypertrophy [20-23]. In some of cancers the promoter hyper-methylation 

of miR-9 had correlation with metastasis formation [15, 24]. 

There are some controversial studies about different result for the expression pattern 

of this miRNA and their promoter status methylation in different cancers. miR-9 is 

overexpressed in several cancer forms, such as brain tumors, hepatocellular carcinomas 

and Hodgkin lymphoma (HL). The up-regulation of miR-9 expression level in breast 

cancer cells lead to increase cell motility, invasiveness and tumor angiogenesis through 

activation of β-catenin signaling pathway. The overexpression of miR-9 in non-

metastatic breast tumor cells causes these cells to make pulmonary micrometastasis in 

mice and its inhibition in highly malignant cells prohibit metastasis formation. In early 

breast cancer and colorectal cancer miR-9 was transcriptionally downregulated in a 

methylation dependent way [17-18]. 

It has been reported that miR-9 is downregulated in gastric carcinoma and it has 

tumor suppressor activity by NF-κB1 expression regulation [10, 19], we reasoned that 

hypermethylation of CpG islands located in the promoter of one or more miR-9 

genomic loci in cancerous tissue might be responsible. In the present study the 

methylation status of CpG islands located in miR-9-1, miR-9-2 and miR-9-3 genomic 

loci in thirty derived adenocarcinoma tumors  and their normal margin tissues as well as 

human gastric adenocarcinoma cell line AGS, are compared. 
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MATERIALS AND METHODS 
 

Thirty gastric cancer specimens and their paired normal marginal tissues were 

obtained from Iran Tumor Bank (Tehran, Iran). The samples consisted of 19 males and 

11 females with 62±9.8 years. The tissues were immediately snap-frozen in liquid 

nitrogen and kept in -86°C till molecular analysis. Small parts of sample were used for 

histopathological analysis by two independent pathologists. The evaluation was 

according to the World Health Organization parameters for grading and TNM system 

for stage classification. Written informed consent was obtained from the participants 

prior to sampling. The Ethics Committee of Tarbiat Modares University approved the 

experiment design. 

Human gastric adenocarcinoma cell line AGS was purchased from the National Cell 

Bank of Iran (Pasteur institute, Tehran, Iran). AGS cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM, Gibco) supplemented with 10% (V/V) fetal bovine 

serum (Gibco), 100 U/ml penicillin and 100 µg/ ml streptomycin, maintained at 37°C in 

a humidified atmosphere with 5% CO2.  

Total genomic DNA was isolated from fresh frozen biopsies, blood samples and 

from cultured cells by TRIZOL reagent (Invitrogen, Carlsbad, Ca, USA) according to 

the manufacturer’s instruction. The quality and concentration of the extracted genomic 

DNAs were examined spectrophotometrically and visualization after electrophoresis 

in1% agarose gel.  

To do Bisulfite treatment of genomic DNA two microgram of extracted DNA from 

a cancerous, their normal margin tissues and cultured cell were subjected to biosulfite 

conversion using EpitTect Bisulfite Kit (QIAGEN). In this modification methylated 

DNA is protected and unmethylated cytosine is converted to the uracil. Briefly, the 

DNA in bisulfite conversion mixture was pre-incubated at 60°C for 10 min in a total 

volume of 140 µl and the conversion reaction was done by thermal cycler conditions 

according to manufacturer's instruction. The purified DNAs were stored at -20°C till 

molecular analyses. 

For analysis of CpG island methylation status of mir-9 family, EpiTect Control 

DNA (human), universal methylated DNA (Chamicon International, Inc), and normal 

lymphocytes DNA were used as controls for discriminating of methylated and 

unmethylated alleles, respectively. Converted genomic DNA of tumors and their normal 

margins served as a template using specific primers set for the methylated or modified 

methylated sequences [15]. MSP amplification was performed in 25 l reaction mixture 

containing 10mM Tris-HCl, 50 mM KCl, 1.25 mM MgCl2, 2 l of bisulfite modified 

DNA, 0.5 U of recombinant Taq DNA polymerase (Cinnagen), 4 M of each primer, 

and 200 M of each deoxynucleoside triphosphate. The initial denaturation was 

performed at 95C for 3 min and amplification was performed for 40 cycles of 

denaturation at 95C for 30 sec, annealing 55 or 57C (dependent on used primers) for 

25 sec, and extension at 72C for 60 sec, followed by a final extension at 72C for 10 

min. The resultant PCR products were separated on 12% polyacryl amide or 2% agarose 

gel stained with ethidium bromide and visualized under UV illumination.  
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To determining of correlations between methylation status and clinopathological 

features χ
2
 or Fisher’s exact probability tests were used. All P values presented are two-

sided. A P≤0.05 was regarded as statistically significant. Statistical analysis of the data 

was performed using SPSS software version 18 (Chicago, IL, USA). 

 

RESULTS 

 
The methylation status of the CpG islands of miR-9 loci by MSP in samples of 

gastric cancer patients were analyzed in comparison to their normal margins. The miR-

9-2 promoter was unmethylated in both normal samples and tumors (Fig. 1B); but miR-

9-3 showed methylation of one allele and unmethylation of the other one in all of 

specimens (Fig. 1C). However, miR-9-1showed methylation of at least one allele in 

73.3% of normal samples and 76.6% in tumor samples, respectively (Fig. 1A). 

Methylation status of miR-9-1 CpG island was not meaningfully different between 

tumor and normal samples (P=0.85). Summary of miR-9- 1, miR-9-2 and miR-9-3 

promoter analyses result by MSP in primary gastric adenocarcinoma and normal 

samples are presented in Table 1. 

 
Figure 1: Methylation-specific PCR analyses of promoters in miR-9 loci family in tumors (T) and their 

normal (N) tissues. Part  (A) represent the MSP analyses of miR-9-1, part (B) MSP analyses of miR-9-2 

and part (C) MSP analyses of miR-9-3 loci, respectively. The presence of a band under the U or M lanes 

indicates unmethylated or methylated sequences. Genomic DNA from normal lymphocytes (NL) and in 

vitro methylated DNA (IVD) are shown as positive controls for the unmethylated and methylated   

sequences, (N) Normal gastric tissue, (T) Tumoral gastric tissue, (NC) Negative Control, ( L) DNA 

ladder. 
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With regard to the variation in methylation status of mir9-1 with mir9-2 and 3 

promoters in tumors and their normal margins, we investigate for the possible 

correlation with the clinopathological features of specimens. There was no significant 

correlation between miR-9-1 methylation status and clinopathological features of tumor 

samples (Table 2).  

 

 
Table 1: Summary of miR-9-1, miR-9-2 and miR-9-3 promoter methylation analysis results  

miR9-3 miR9-2 miR9-1  

Tumor Non-tumor Tumor Non-tumor Tumor Non-tumor  

0 0 0 0 14 12 M/M 

0 0 30 30 7 8 U/U 

30 30 0 0 9 10 M/U 

Note: The methylation status of promoters was examined by methylation specific PCR technique. M and 

U are indicating methylated and unmethylated status of loci in promoter regions of mir-9 family, 

respectively.  

 

 

 

Table 2: Analyzing of possible relation between clinopathological characteristics of patients with MiR-9-

1 locus methylation status 
P-value miR-9-1 

unmethylated 

miR-9-1 

methylated 

Characteristics 

0.66  

4 

3 

 

9 

14 

Age 

›62 

‹62 

 

1.00  

4 

3 

 

15 

8 

Gender 

Male 

Female 

0.64  

3 

4 

 

6 

17 

Tumor stage 

I+II 

III+IV 

 

0.20  

5 

2 

 

9 

14 

Tumor grade 

I+II 

III+IV 

 

1.00  

1 

6 

 

11 

12 

Lymph node metastasis 

No 

Yes 

 

0.19  

5 

2 

 

15 

8 

Distant metastasis 

No 

Yes 

 

 

In AGS cell line miR-9-1 and miR9-2 loci were fully methylated. However miR-9-

3 locus was methylated in one allele and unmethylated in the other one in AGS cell line 
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(Fig. 2). Our data revealed that methylation of these CpG islands were not meaningfully 

different between normal and tumor gastric adenocarcinoma specimens. 

 

 

 
 

Figure 2: Methylation-specific PCR analyses of miR-9 in AGS cell line. The presence of a band under 

the U or M lanes indicates unmethylated or methylated sequences, respectively and L is presenting DNA 

ladder. 

 

 

DISCUSSION 
 

Recent reports revealed that some miRNAs were deregulated in human 

malignancies [21-24]. Saito et al first addressed epigenetic regulation of miRNAs. They 

identified those 17 miRNAs up regulated in bladder cancer after treatment with 5-aza 

and PBA [11]. Identification of cancer specific miRNAs and molecular mechanisms 

underlying regulation of miRNAs expression may be important for defining novel 

targets for cancer therapies [25-26]. 

MiR-9 expression level increases during embryonic stem (ES) cell differentiation to 

neural precursors [27]. MiR-9 acts as a putative tumor suppressor gene on recurrent 

ovarian cancer and inhibits ovarian cancer cells growth through NF-κB1 regulation [28, 

29]. Luo et al reported miR-9 down-regulation in gastric carcinoma [19]. Wan et al 

showed miR-9 is down-regulated in gastric adenocarcinoma and inhibits the growth of 

human gastric adenocarcinoma cell line MGC803 through NF-κB1 gene regulation [20]. 

To figure out the cause of reduction reduction in miR-9 expression of human gastric 

cancer, we examined the methylation status of the CpG islands of miR-9 loci in human 

gastric primary tumors with normal margin gastric tissue and AGS cell line. 

Since miR9-2 CpG island was unmethylated in all of the normal and tumor patient 

samples we reasoned that transcription of this site would not be affected by methylation. 

While in the contrary, miR-9-2 CpG island was methylated in the AGS cell line. miR-9-

2 methylation in AGS cell line reveals that all of the molecular alteration of cancerous 

cell line cannot be attributed to matched in situ tumors. Ertel et al. showed differential 

in methylation pattern using cellular pathways by tumor cells and cancer cell lines [30]. 

miR9-3 CpG island showed methylation in one allele and unmethylation status in 

the other one in all of patient samples and AGS cell line too. The observed heterozygous 

methylation status of miR9-3may be an allele-specific methylation (ASM) phenomenon. 
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In 2008, Kerkel et al. showed that tissue specific ASM outside of imprinted genes 

showing strong correlation with local SNP genotypes [31].
 
Two recent genome wide 

surveys of ASM showed statistically significant CpG SNPs near loci with ASM [32, 

33]. Since ASM usually is due to cis-effects of existed genetic polymorphisms it is 

possible that a CpG SNP variation may be near to the miR-9-3 CpG island locus. 

However, the methylation status of miR-9-1 CpG island was not meaningfully different 

between tumor and marginal samples. There was no correlation between miR-9-1 

methylation and clinopathological features of tumors. 

Based on two studies miR-9 is down-regulated in gastric carcinoma and has tumor 

suppressor activity by NF-κB1 expression regulation [18-19], but recently it has been 

reported that miR-9 is up-regulated in gastric cancer tissues and down-regulated CDX2 

expression but methylation status of these three miR-9 regions did not correspond to the 

expression levels of precursor miR-9 or maturemiR-9 [34]. Therefore the exact function 

of miR-9 as a tumor suppressor, oncogene or both of them, remains to be elucidated in 

gastric cancer. Aberrant hypermethylation of miR-9 family genes (miR-9-1, miR-9-2 

and miR-9-3) was reported in some primary tumors with lymph node metastasis such as 

colon, lung and breast cancers, and melanoma [15].In early breast cancer and colorectal 

cancer miR-9 was transcriptionally down-regulated in a methylation dependent way [16, 

18].On the contrary, recently it is reported that miR-9 levels were significantly up 

regulated in primary breast tumors from patients with metastases compared to those 

from metastasis-absent patients. In the other hand Tsai et al reported that DNA 

methylation tightly repressed miR-9 through the simultaneous methylation of the CpG-

rich regions of these three independent genes [35]. Butour data revealed that 

methylation status of miR-9 family CpG islands are not different between tumor and 

non-tumor tissues of gastric, and cannot account for alteration of miR-9 expression in 

this type of gastric cancer [34]. However one of the alleles of miR9-3 may be 

specifically methylated in gastric tissue. The difference between our data and Tsai et al 

data may be population based (population epigenetics). 

Taken together, it seems that the exact function and regulatory mechanisms of miR-

9 expressions remain to be elucidated in gastric cancer and further studies on miR-9 

expression and methylation of their promoters in normal gastric and other cancer are 

needed. 
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