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ABSTRACT 
 

Understanding cattle metabolism and its relationship with milk products is important 

in bovine breeding. A systemic view could lead to consequences that will result in a 

better understanding of existing concepts. Topological indices and quantitative 

characterizations mostly result from the application of graph theory on biological data. 

In the present work, the enzyme network involved in cattle milk production was 

reconstructed and analyzed based on available bovine genome information using several 

public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network 

consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that 

catalyzed the corresponding reactions. The characteristics of the directed and undirected 

network were analyzed using Graph Theory. The mean path length was calculated to be 

4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub 

enzymes whose abnormality could harm bovine health and reduce milk production were 

determined. Therefore, the aim of constructing the enzyme centric network was 

twofold; first to find out whether such network followed the same properties of other 

biological networks, and second, to find the key enzymes. The results of the present 

study can improve our understanding of milk production in cattle. Also, analysis of the 

enzyme network can help improve the modeling and simulation of biological systems 

and help design desired phenotypes to increase milk production quality or quantity. 
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INTRODUCTION 
 

Graph theory is the study of graphs that can be used to model relationships in 

different types of systems (such as biological and social information and so on). In the 

recent decades, great achievements have been made in the developing theory of 
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biological networks [1]. One of the outreaching goals of systems' biology is the study of 

complex biological networks (gene, protein, metabolic networks, etc.) [2-3].  

Many practical problems in biological systems could be represented by graphs. A graph 

G (V; E) is a set V of vertices and a set E of edges. Graphs could be defined as 

undirected or directed based on their edges. Metabolic networks, as a group of 

biological networks, could also be represented by graphs. Metabolism contains the sum 

of all biochemical reactions catalyzed by enzymes in a cell. Chemical reactions of 

metabolism are organized into metabolic pathways [4]. Metabolic networks are among 

the most studied biochemical networks [5]. Large scale metabolic reconstruction 

provides a highly mathematical, structured platform that enables biological science to 

proceed in fundamental new ways [6]. The study of methods for developing metabolic 

reconstructions has been reviewed in recent years [7]. At the moment, metabolic 

databases such as KEGG are available to reconstruct an organism specific metabolic 

network from genome information using several methods [8]. Based on the graph theory 

and depending on a metabolic network nodes types, metabolic networks could be 

classified as: metabolite networks (metabolites as nodes), enzyme networks (enzymes as 

nodes), and bipartite networks (both metabolites and enzymes as nodes) [9-10]. 

 Despite the rapid development of systems' biology, studies on mammals are still rare, 

especially those focusing on large-scale metabolic networks of livestock [6]. Large-

scale metabolic network studies can help develop animal sciences. Cattle milk, which 

itself considers as part of a metabolic network, is an agro-economical product and an 

essential human food; thus, an improvement in dairy cattle milk production is important.   

 Traditionally, genes associated with milk production traits are individually studied 

and elites are selected based on their genotypes in these loci [11-13]. This method is 

both costly and time consuming. Comparatively, the integration of knowledge at the 

metabolic level in a large-scale network requires less labor and time. Hence, this 

process is pivotal for the in-depth understanding and improvement of milk yield. 

Presently, the reconstruction of a large-scale metabolic network of dairy cattle has 

become possible, and the whole genome sequence for cattle has been published [14]. 

Human tissue specific network reconstruction encouraged us to focus on the 

reconstruction of an enzyme network involved in milk production in cattle (tissue-

specific network) [15]. 

Using Graph Theory, in the present work the enzyme network involved in milk 

production in cattle was analyzed using the available genome annotation. Cattle 

mammary gland tissue has multiple metabolic potentials for large-scale synthesis of 

milk proteins, carbohydrates, and lipids, including nutrient triacylglycerols [5]. Milk 

production can be studied by reconstructing the metabolic network in mammary gland 

tissue using system biology methods. The present study can help enhance our 

understanding of cattle milk production. 

 

MATERIALS AND METHODS 
 

A total of 6,875 expressed mammary gland tissue-specific genes involved in cattle 

milk production were downloaded from the UniGene database by ftp service. Lemay et 
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al. reported 6,469 genes [16]. Each gene was queried in the Uniprot database to verify 

whether it was an enzyme. At this step, 791 enzyme-encoding genes were detected. 

  Catalytic functions of each enzyme are generally described through the EC numbers 

assigned to catalyzed reactions [17]. The corresponding reaction information was 

queried in KEGG and Brenda databases and all reactions with substrates and products 

were selected [18]. Finally, 791 bovine mammary gland genes were found to account 

for the 2050 reaction formulas in 646 enzymes. Based on the data, we wrote a Programe 

in C# in order to extract the information to a desired format convertible to the Systems 

Biology Markup Language [SBML] format [19]. 

 There were ten compartments [cytoplasm, extracellular space, mitochondria, Golgi 

apparatus, endoplasmic reticulum, lysosome, peroxisome, Cytosol, Vacuol and 

nucleus], accounting for 3065 reactions and 5837 metabolites. The SCAN-toolbox 

package [10] was used to construct directed and undirected reaction-centric networks 

based on an SBML file. The reaction-centric network must be built on the SBML file 

because it contains a bipartite graph. This toolbox contains a set of MATLAB scripts 

that take an SBML file as input. An important point in reaction-centric networks is that 

currency metabolites should be removed [20]. In our study, these metabolites were: 

ADP, ATP, CO2, O2, H2O, H2O2, H
+
, NAD, NADH, NADP, NADPH, and NH4. The 

global network was reconstructed using the publicly available Cytoscape software [21]. 

The topological attributes of the network and parameters of nodes, including degree, 

mean path length, network diameter, etc. were analyzed using a number of Cytoscape 

plugins such as Network Analysis and cytoHubba [2]. 

 

 

RESULTS AND DISCUSSION 
 

Graph theory includes methods that have been proven beneficial for network 

topological analysis [22-23]. Real networks display a scale-free property, and a 

significant difference has been found between random and scale-free networks. 

Topological characteristics of the constructed networks were analyzed using the 

Network Analysis plugin and parameters of each node were also calculated. General 

characteristics of the networks are shown in table 1. The network file is attached in 

Supplementary file 2 and 3, and it can be viewed using the Cytoscape software. 

An enzyme centric network is constructed as the vertices of the graph are enzymes 

and an edge is considered if there is at least one common metabolite between two 

enzymes. [13]. The degree of node and degree distribution are considered as the most 

used topological characteristics of a network. The degree of node corresponds to the 

number of nodes neighboring a given node v, where neighbor means directly connected 

[24]. Determining the degree distribution allows for the discrimination of network 

classes [25]. The degree distribution of a real network follows the power-law 

distribution [26]:  

P[k] ~ k
-γ

, 

where the superscript γ is the power-law coefficient that determines many properties of 

the system. The smaller the value of γ, the more important the role of the "hub" nodes in 
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the network [25]. The degree distribution of the constructed undirected network is 

shown in Fig. 1, where the γ is 0.83 and correlation coefficient r is 0.78 [P<0.0001]. 

The degree distribution of the constructed directed network is shown in Fig. 2, where γ 

is 1.08 and 0.87 for in-degree and out-degree, respectively, and the correlation 

coefficients (r)  are 0.97 and 0.95 for in-degree and out-degree, respectively [P<0.0001]. 

Generally speaking, the irregular properties of scale-free networks are valid only for the 

exponent of a power-law [γ] <3. In the present work, the degree distribution graphs in 

Fig. 1 and 2 clearly indicate the scale free nature and power law behavior of the cattle 

enzyme network [27]. 

 
Table 1: General characteristics of the constructed networks 

Parameters Directed Values Undirected Values 

Nodes 2614 3198 

Edges 21891 89639 

Characterististic  Path Length 4.39 5.41 

Network diameter 18 16 

Clustering Coefficient 0.04 0.83 
 

 These parameters are also important characteristics because they offer a measure of 

a network’s overall navigability and show how high and low are better defined when 

compared to the total number of nodes in the graph. For the whole network, the 

diameter is the largest distance between two nodes which shows the development of the 

network in time, while the mean path length is the average length of the shortest path 

between any pair of nodes [25]. Thus, a biological network with a large size and low 

parameters may suggest that the proteins within the network had a functional co-

evolution [1]. 

 Figures 3 and 4 (undirected and directed networks) show that in the present 

network, the shortest path length distributions conformed to a normal distribution (the 

path length characteristic being equal to 5.41 and 4.39 for undirected and directed 

networks, respectively). In addition, network diameter values were 16 and 18 for 

undirected and directed networks, which were much larger than that of a random 

network [28]. Previous studies revealed that many metabolic networks had a similar 

mean path length of approximately 3.2, which is almost equal to the values obtained by 

the present study, suggesting that metabolic networks are small-world networks [23]. In 

spite of this, Ma and Zeng reconstructed the metabolic networks of 80 organisms and 

maintained that such finding is not biochemically significant. They also showed that 

eukaryotes and archaea had longer average path lengths than bacteria [20]. In our study, 

these two important network properties (mean path length and network diameter) were 

approximately equal to the values of bacteria (7.23 and 20.6), and much larger or 

smaller than eukaryotes (9.57 and 33.1) and archaea (8.50 and 23.4). This indicates that 

although the primary structure of metabolic networks is similar for all organisms, they 

have a   different evolutionary history [20]. 

We analyzed the directed network with the cytoHubba plug-in [2] and identified 11 

hub enzymes. Table 2 shows the list of the top ten high degree enzymes. Corresponding 

genes as well as the involved pathways and reactions are shown in Table 3. The 
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associated pathways seem to be useful and essential for cattle breeding research. Since 

hubs in scale-free networks play a significant role in maintaining topological robustness 

[29], we attempted to identify hub nodes that dominated the network structure (Table 2). 

Following the Barabasi-Albert algorithm of the preferential growth model, hub enzymes 

(with high degrees nodes) are likely to be ancient enzymes [30]. Therefore, high degree 

enzymes that belong to the primitive class of the enzyme network should be highly 

conserved [30-31]. These hub enzymes play an important biological role in the 

mammary glands' milk production and, therefore need to be studied further [13-32].  

 

 
Table 2: First 11 hub enzymes of the metabolic networks ranked by the degree of the nodes 

Hub Enzyme Degree 

Superoxide dismutase 2, mitochondrial 174 

Cytochrome P450 2D14 172 

Gamma-glutamyl carboxylase 151 

Alpha-aminoadipic semialdehyde dehydrogenase 136 

Trans-2-enoyl-CoA reductase, mitochondrial 135 

Dihydropteridine reductase 133 

Fatty acid synthase 129 

Thioredoxin reductase 2, mitochondrial 129 

Thioredoxin reductase 1, cytoplasmic (TR) 129 

Prostaglandin reductase 1 127 

3-oxoacyl-(acyl-carrier-protein) reductase 124 

 

 
Figure 1: Degree distribution of the undirected network conforms to a power law, with the correlation 

coefficient of r = 0.36 (P<0.0001). The value of γ is as small as 0.83. The degree of distribution 

displays a scale-free property of the network. 
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Table 3: First 11 hub enzymes of the enzyme networks with corresponding reaction information 

Gene Enzyme Class EC Number Reaction 

SOD2 Oxidoreductases 1.15.1.1 
R00275: 2 O2.- + 2 H+ <=> Hydrogen peroxide 

+ Oxygen 

CYP2D14 

 
Oxidoreductases 1.14.14.1 

R02351: Estrone + Formate + Oxidized 

flavoprotein + H2O <=> 19-Oxoandrost-4-ene-

3,17-dione + Oxygen + Reduced flavoprotein 

R03697: Morphine + Oxidized flavoprotein + 

Formaldehyde + H2O <=> Codeine + Reduced 

flavoprotein + Oxygen 

R03087: Estradiol-17beta + Formate + 

Oxidized flavoprotein + H2O <=> 19-

Oxotestosterone + Oxygen + Reduced 

flavoprotein 

GGCX GC Lyases 4.1.1.90 

R05144: Gla protein + Vitamin K1 epoxide + 

H2O <=> Gla protein precursor +  Phylloquinol 

+ CO2 + Oxygen 

R09991: 2,3-Epoxymenaquinone + Gla protein 

+ H2O <=> Menaquinol + Gla  protein 

precursor + CO2 + Oxygen 

ALDH7A1 Oxidoreductases 1.2.1.31 

R04390: alpha-Aminoadipoyl-S-acyl enzyme + 

NADPH + H+ <=> L-2-Aminoadipate  6-

semialdehyde + Holo-Lys2 + NADP+ 

MECR Oxidoreductases 1.3.1.38 

R06985: trans-Hex-2-enoyl-CoA + NADPH + 

H+ <=> Hexanoyl-CoA + NADP+ 

R07761: (2E)-Octadecenoyl-CoA + NADPH + 

H+ <=> Stearoyl-CoA + NADP+ 

 

QDPR Oxidoreductases 1.5.1.34 
R01794: Dihydrobiopterin + NADPH + H+ 

<=> Tetrahydrobiopterin + NADP+ 

FASN Transferases 2.3.1.85 

R05188: Acetyl-CoA + n Malonyl-CoA + 2n 

NADPH + 2n H+ <=> Long-chain fatty acid + n 

CO2 + 2n NADP+ + (n+1) CoA + n H2O 

TXNRD2 Oxidoreductases 1.8.1.9 
R09372: 2 NADPH + 2 H+ + Methylselenic 

acid <=> 2 NADP+ + 2 H2O +  Methaneselenol 

TXNRD1 Oxidoreductases 1.8.1.9 
R09372: 2 NADPH + 2 H+ + Methylselenic 

acid <=> 2 NADP+ + 2 H2O +  Methaneselenol 

PTGR1 Oxidoreductases 1.3.1.- 

R08754: Geranylgeranyl diphosphate + 

NADPH + H+ <=> Dihydrogeranylgeranyl  

diphosphate + NADP+ 

R08755: Dihydrogeranylgeranyl diphosphate + 

NADPH + H+ <=>  Tetrahydrogeranylgeranyl 

diphosphate + NADP+ 

R08756: Tetrahydrogeranylgeranyl diphosphate 

+ NADPH + H+ <=> Phytyl  diphosphate + 

NADP+ 

FASN Oxidoreductases 1.1.1.100 

R10120: 3-Ketopimeloyl-(acp) methyl ester + 

NADPH + H+ <=> 3-Hydroxypimeloyl-(acp) 

methyl ester + NADP+ 

R10116: 3-Ketoglutaryl-(acp) methyl ester + 

NADPH + H+ <=> 3-Hydroxyglutaryl-(acp) 

methyl ester + NADP+ 

R07763: 3-Oxostearoyl-(acp) + NADPH + H+ 

<=> 3-Hydroxyoctadecanoyl-(acp) + NADP+ 
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Figure 2: Degree distribution of the directed network conforms to a power law, with the correlation 

coefficient of r = 0.46 and 0.36 (P<0.0001). The value of γ is as small as 1.08 and 0.87(in-degree and 

out-degree respectively). The degree of distribution displays a scale-free property of the network. 

 

 

 

 
Figure 3: Shortest path length distribution of the directed network conforms to the normal 

distribution. For the entire network, the value of the mean path length is equal to 4.39. 
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Figure 4: Shortest path length distribution of the undirected network conforms to the normal 

distribution. For the entire network, the value of the mean path length is equal to 5.41. 

 

The activity of many enzymes can vary significantly according to the cells' 

metabolic activity and complex metabolic pathways [33-4]. As demonstrated in Table 3, 

the following genes CYP2D14 (1.14.14.1), MECR (1.3.1.38), FASN (2.3.1.85), and 

FASN (1.1.1.100) participate in fatty acid and lipid metabolism pathways. GGCX 

(4.1.1.90) and QDPR (1.5.1.34) participate in ubiquinone and other terpenoid-quinone 

biosyntheses as well as the metabolism of cofactors and vitamin pathways, whereas 

SOD2 (1.15.1.1) acts in FoxO signaling, transport and catabolism pathways. TXNRD2 

(1.8.1.9), TXNRD1 (1.8.1.9), and ALDH7A1 (1.2.1.31) participate in the biosynthesis 

and  degradation of amino acids (such as Glycine, Serine, Threonine, Lysine, Valine, 

Leucine, Isoleucine, Arginine, Proline, Histidine, Tryptoph, and Beta-Alanine), 

biosynthesis  of fatty acids and lipid, glycerolipid metabolism, nucleotide and 

carbohydrate metabolism, and glycolysis/gluconeogenesis. Changes in these "gene 

expressions" could directly affect the production of the pathway. The abnormality 

among these enzymes that harms bovine health and reduces milk production may be 

attributed to carbohydrate and protein changes and lipid metabolism [11,12-32]. In the 

present work, enzymes were found to play critical roles in controlling or regulating 

cellular responses to specific physiological stimulus. This finding contributes to various 

experimental strategies used for the identification of protein interactions. Nevertheless, 

traditional methods are both costly and time consuming [2]. Thus, the reconstruction of 

a comprehensive enzymatic network for milk production in dairy cattle will increase our 

understanding of this complex metabolic process and enable animal geneticists and 

breeders to focus on key (hub) enzymes for ongoing breeding schemes.  This can, in 

turn, result in a more rapid development in milk production studies and dairy industries 

[34-35].  
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It should be noted that although known metabolic data from different data sources 

were collected, many unknown factors could have effected the results of the present 

study. Further research is thus needed to identify and study these factors.   

In the past decade, main advances have been made in the area of metabolic networks 

and their topological features. Such developments reveal new biological features and 

enable researchers to comprehend biological systems from a more abstract point of 

view. Moreover, studies involving the identification of metabolic networks are 

important as they help obtain a better understanding of mammary gland physiology as 

well as food, dairy, and animal sciences as related to mammary gland metabolic 

activity, milk composition, and milk quality. In the present study, we reconstructed and 

analyzed the enzyme centric network involved in milk production in cattle using 

information available through the KEGG metabolic pathway database. Characteristics 

of this network were analyzed, and the top 11 hub enzymes were identified. Cattle 

mammary gland scale-free behavior of the enzyme network suggests that during 

evolution, new nodes tend to have been attached preferentially to a few highly-

connected ancient nodes. This possibly indicates that enzymes (nodes) with very high-

degrees are likely to be very ancient, a finding which was further confirmed by the 

analysis of high degree nodes [38-37].  

The results the present work include information that might improve our 

understanding of cow milk production and breeding. Analyses of enzyme networks are 

also used for the modeling and simulation of biological systems as well as designing 

desired phenotypes that can help increase the quality or quantity of dairy products. 
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