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ABSTRACT 
 
Recent advances in DNA sequencing techniques have led to an increase in the identification 

of single nucleotide polymorphisms (SNPs) in BRCA1 and BRCA2 genes, but no further 
information regarding the deleterious probability of many of them is available (Variants of 
Unknown Significance/VUS). As a result, in the current study, different sequence- and 
structure-based computational tools including SIFT, PolyPhen2, PANTHER, SNPs&GO, 
FATHMM, SNAP, PhD-SNP, Align-GVGD, and I-Mutant were utilized for determining how 
resulted BRCA protein is affected by corresponding missense mutations. FoldX was used to 
estimate mutational effects on the structural stability of BRCA proteins. Variants were 
considered extremely deleterious only when all tools predicted them to be deleterious. A total of 
10 VUSs in BRCA1 (Cys39Ser, Cys64Gly, Phe861Cys, Arg1699Pro, Trp1718Cys, Phe1761Ser, 
Gly1788Asp, Val1804Gly, Trp1837Gly, and Trp1837Cys) and 12 in BRCA2 (Leu2510Pro, 
Asp2611Gly, Tyr2660Asp, Leu2686Pro, Leu2688Pro, Tyr2726Cys, Leu2792Pro, Gly2812Glu, 
Gly2813Glu, Arg2842Cys, Asp3073Gly, and Gly3076Val) were considered as extremely 
deleterious. Results suggested that deleterious variants were mostly enriched in the N- and C-
terminal domain of the BRCA1 and BRCA2 C-terminus. Utilizing evolutionary conservation 
analysis, we demonstrated that the majority of deleterious SNPs ensue in highly conserved 
regions of BRCA genes. Furthermore, utilizing FoldX, we demonstrated that alterations in the 
function of proteins are not always together with stability alterations.  
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INTRODUCTION 

 
Germ-line mutations in BRCA1 and BRCA2 tumor suppressor genes comprise most of the 

familial breast and ovarian cancer cases and significantly increase the chance of cancer 
development in carriers [1, 2]. BRCA1 is responsible for encoding BRCA1 protein which 
consists of 1,863 amino acids, an N-terminal RING domain which binds with BARD1 to form a 
heterodimeric E3 ubiquitin ligase [3], a domain in the middle of the moiety interacting with 
DNA repair protein RAD51 [4], and a C-terminus containing two conserved BRCA1 C-terminal 
(BRCT) domains that mostly involve in tumor suppression, growth inhibition and transcription 
activation [5-7]. RING finger and BRCT domains are the most conserved regions of BRCA1 
and mutations in these domains are in close association with hereditary breast and ovarian 
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cancer development [8-10]. BRCA2 is composed of 27 exons, which together encode a 3,418 
amino acid protein referred to as BRCA2. The N-terminal domain of BRCA2 comprises of a 
transcription activating domain (residues18-105), while the middle region contains eight 
conserved BRC-repeated motifs [11], essential for binding with RAD51 and initiation of DNA 
repair [12]. A conserved DNA-binding domain has also been located in the C-terminal region of 
the BRCA2 protein which interacts with several other proteins, including DSS1 [13]. DSS1 is a 
highly conserved 70-amino-acid acidic protein involved in the repair of DNA double-strand 
breaks (DSB). So far, more than 1,781 mutations for BRCA1 and 2000 mutations for BRCA2 
genes, including missense and insertion/deletion polymorphisms, etc. have been documented at 
the Breast Cancer Information Core (BIC) database. Most clinically relevant alterations detected 
in the BRCA genes are either nonsense or frameshift mutations, resulting in truncation or 
inactivation of the protein. These variants significantly deplete proteins function, early detection 
of them can contribute to prompt initiation of therapy or planning proper therapeutic strategies 
for preventing or delaying future cancer occurrence. Contrarily, in most cases, genetic variants, 
including missense and silent substitutions plus alterations in intronic and regulatory regions, 
provide no specific information regarding the function of the altered protein and generally 
referred to as variants of uncertain significance (VUS). Existing experimental methods for 
identifying the role of VUSs is too costly and time-consuming. Hence, the development of a 
low-cost and fast method for interpreting VUSs is valuable. Application of computational 
approaches for discriminating deleterious nonsynonymous substitution SNPs (nsSNPs) from 
neutral ones has emerged as an ideal strategy for exploring the mutation-structure-function 
relationship. Recently, several attempts have been dedicated to developing an improved 
computational approach for detecting deleterious mutations [14, 15]. In the current study, the 
deleterious effects of mutations were predicted by several computational tools with different 
features, including evolutionary conservation, structural information, and biophysical 
characterization. 

 
 

MATERIALS AND METHODS 
 

SNP information Retrieval: SNPs in BRCA1 and BRCA2 coding regions were retrieved 
from the BIC database (https://research.nhgri.nih.gov/bic/). Furthermore, data regarding the 
association between variations and their further disease-causing potency were obtained from the 
International Agency for Research on Cancer (IARC) [16]. The IARC database is a panel of 
experts that classified variants based on segregation data, prediction tools, and co-occurrence 
with a pathogenic BRCA variant, and so on. According to the IARC database, the variants were 
categorized into five classes as follows: 1) pathogenic/Class 5, 2) likely pathogenic/Class 4, 3) 
variant of uncertain significance/Class 3 and 4) likely benign/Class 2 and 5) benign/Class 1.  

 
Prediction based on sequence homology: In this study, different sequence- and structure-

based computational tools including, SIFT [17], PolyPhen 2 [18], PhD-SNP [19], FATHMM 
[20], PANTHER [21], SNAP [22] and SNPs&GO [23] were used for determining the functional 
significance of nsSNPs in BRCA genes. A summary of the methods is presented in supplement 
file Table 1. 

 
Prediction based on biophysical characterization: Align-GVGD is a program for 

combining protein multiple sequence alignments (MSA) and biophysical characteristics of 
amino acids for precise predicting that whether a missense substitution is deleterious or neutral. 
The Grantham Variation (GV) score calculates the grade of biochemical variation among amino 
acids presented at a particular position in the MSA, and the Grantham Deviation (GD) imitates 
the biochemical distance between the mutant and correct amino acid in its prime position. Based 
on Align-GVGD, missense substitutions categorize into seven grades (C0 (most likely neutral), 
C15, C25, C35, C45, C55, and C65 (most likely deleterious)) [24, 25]. The C45, C55, and C65 
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classes show that mutations affecting the protein function while the intermediate class (C35), 
and C0, C15, and C25 classes do not seem to have a functional impact. 

 
Prediction of protein stability with I-Mutant 3.0: I-Mutant 3.0 is an SVM based protein 

stability prediction tool that estimates changes in protein stability upon single-point mutation in 
protein sequence or structure. Predicted free energy change value (DDG) is calculated from the 
changes between the Gibbs free energy (kcal/mol) of folded native proteins and unfolded 
mutant protein. Based on the calculated free energy changes, the software classifies predictions 
in three classes including neutral mutation (-0.5 ≤ DDG ≤ 0.5 kcal/mol), a large decrease (<-0.5 
kcal/mol) and a large increase (> 0.5 kcal/mol) [26]. 

 
Evolutionary conservation analysis: The ConSurf server estimates the degree of 

conservation of each position, based on amino acid sequence comparisons. [27]. ConSurf scores 
range from 1 to 9: 1 indicates that the site is evolving rapidly (variable); 5 is the average, and 9 
is slowly evolving. 

 
Statistical analysis: Predictions of eight computational methods qualities including, 

SIFT[17], PolyPhen2 [18], PhD-SNP [19], FATHMM [20], PANTHER [21], SNAP [22], 
SNPs&GO [23],  and I-Mutant 3.0 [26] were described by several statistical parameters in terms 
of sensitivity, specificity and MCC scores. To achieve this goal, the predictions made using 
computational tools were compared with the clinical classification of variants by the IARC 
database. The MCC is a correlation coefficient between the observed and predicted 
classifications, and varies between -1 and 1. An MCC coefficient of +1 represents the best 
possible prediction, whereas the MCC coefficient of -1 is regarded as the worst possible 
prediction. An MCC coefficient of 0 indicates a completely random prediction. Sensitivity, 
specificity, and MCC are calculated according to the following formulas: 

 

 

 

 
Where Tp,Tn, Fp and Fn are True positive, True negative, False positive and False negative, 
respectively. 

 
Homology modeling of human BRCA2-DSS1: So far, homology modeling is the most 

accurate developed technique for constructing a reliable protein model based on amino acid 
sequences and the available crystal structure of homologous protein templates. In this approach, 
the quality of the constructed protein model mostly depends on template selection and the 
accuracy of sequence-template alignment. Currently, there is no crystal structure data for the 
human BRCA2 protein. Therefore, The human BRCA2 in complex with DSS1 was built using 
mouse BRCA2/DSS1 (PDB ID:1MIU) as the template with 76% sequence identity and 85% 
sequence similarity [13]. Of the 50 models generated with Modeller version 9.12 [28], the best 
one was chosen based on the lowest DOPE score. The quality of the model was evaluated using 
PROCHECK [29, 30] and also the structural comparison concerning the template. 

 
Analysis of amino acid substitutions on protein structural stability by FoldX: FoldX 

plugin version 3.0 beta 6 for the YASARA program [31, 32] was utilized for calculating the 
impact of mutations on protein stability. FoldX is an empirical force field, calibrated by 
analyzing a collection of more than 1000 point mutations from 82 protein-protein complexes. 
ΔΔG was defined as the free energy difference between the wild-type ΔG(WT) and mutant 
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ΔG(MT) and estimates whether a mutation is stabilizing (ΔΔG<0) or destabilizing  (ΔΔG>0). It 
is calculated according to the following formula: ΔΔG = ΔG(MT) – ΔG(WT) 
 
 

RESULTS  
 
SNP data consisting of 520 missense mutations for BRCA1 and 814 for human BRCA2 

genes were retrieved and considered for further computational analysis. These SNPs were 
considered for computational analysis. The preformed steps in this study are summarized in 
Figure 1. 

 
Figure 1: Flow chart for computational analysis of SNPs in this study 

 
Figure 2 shows the distribution of the predicted deleterious and neutral variations in the 

human BRCA genes. 337 (64.8%), 335 (64.4%), 198 (38%), 327 (62.8%), 459 (88.2%), 254 
(48.8%) and 223 (42.8%) out of 520 predicted missenses for BRCA1 were classified as 
deleterious by SIFT, PolyPhen2, PANTHER, SNAP, SNPs&GO, PhD-SNP and FATHMM, 
respectively. Similarly, for BRCA2, SIFT, PolyPhen2, PANTHER, SNAP, SNPs&GO, PhD-
SNP and FATHMM predicted 356 (43.7%), 438(53.8%), 242 (37.6%), 273 (33.5%), 766 
(94.1%), 111 (13.6%) and 260 (31.9%) nsSNPs as deleterious, respectively (Fig. 2). 

 

 
 

Figure 2: Distribution of predicted nsSNPs in  BRCA1 (A) and  BRCA2 (B) genes. 
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Align-GVGD was used to assign classes of each variant from C0 (most likely neutral) to 
C65 (most likely deleterious). For BRCA2 variants, a great majority (683 of 814, 83.92%) fell 
into C0 class. Remaining SNPs were then classified as class 15 (n=28), class 25 (n=13), class 35 
(n=16), class 45 (n=5), class 55 (n=14) and class 65 (n=55). For BRCA1, the majority of 
variants (n=413) fell into C0 class, and the remaining were classified as class 15 (n=16), class 
25 (n=13), class 35 (n=11), class 45 (n=8), class 55 (n=8), and class 65 (n=51). In this study, 
substitutions with scores C45, C55 and C65 were considered as deleterious. The list of all 
mutations with their prediction scores is available in the S1 Appendix 

I-Mutant 3.0 is an SVM-based tool, and it has been trained to predict protein stability 
changes upon single-point mutations, using structure and sequence information. The results for 
BRCA2 indicated that 484 nsSNPs (59.4%) with negative ΔΔG values were less stable and 
deleterious, 316 SNPs (38.8%) were neutral, and 14 SNPs (1.7%) increased the stability of the 
protein. Similarly, for BRCA1, it gave an estimation of 333 stability-decreasing-nsSNPs (64%), 
while 182 SNPs (35%) were neutral to the mutation and 5 SNPs (0.96%) increased the stability 
of protein after mutation (S1 Appendix).  

The performance of computational tool results was assessed by calculating sensitivity, 
specificity, and MCC using registered variants in the IARC database as the gold standard. 
Experimental data regarding the clinical significance of 117 BRCA1 variants and 115 BRCA2 
variants were obtained from the IARC database. These mutations were shown in the S1 
Appendix (column P). Of the seven computational approaches, PhD-SNP, SNAP, and 
SNPs&GO performed with a sensitivity score of 100% for BRCA1. Nevertheless, FATHMM 
(36.36%) performed the worst regarding sensitivity. PANTHER performed the best (68.48%, 
0.5085) in terms of specificity and MCC. SNP&GO (17.39%) and SNAP (31.53%) performed 
worst in terms of specificity. On the other hand, FATHMM (-0.057) had the worst performance 
in terms of MCC (Table 1). For BRCA2, SN&GO, PolyPhen2, and FATHMM showed a 
sensitivity of 100%. Additionally, PhD-SNP (86.95%, 0.493) and FATHMM (70.65%, 0.466) 
performed the best in terms of specificity and MCC. However, SNP&GO was the worst in terms 
of specificity and MCC (2.17%, 0.05), while SNAP and I-Mutant in terms of sensitivity (66.6%) 
(Table 1). 
 
Table 1: Statistical evaluation of various computational methods 

  SIFT PolyPhen PANTHER PhD-SNP SNP&GO SNAP FATHMM I-Mutant 

B
R

C
A

1 

Tp 21 20 21 22 22 22 8 14 

Tn 40 36 63 54 16 29 52 30 

Fp 52 56 29 38 76 63 40 62 

Fn 1 2 1 0 0 0 14 8 

Sensitivity (%) 95.45 90.91 95.45 100 100 100 36.36 63.64 

Specificity (%) 43.48 39.13 68.48 58.7 17.39 31.52 56.5 32.61 

MCC 0.32 0.2515 0.5085 0.4639 0.197 0.2856 -0.0569 -0.0314 

B
R

C
A

2 

Tp 11 12 9 9 12 8 12 8 

Tn 42 32 41 80 2 56 65 42 

Fp 50 60 27 12 90 36 27 50 

Fn 1 0 3 3 0 4 0 4 

Sensitivity (%) 91.6 100 75 75 100 66.67 100 66.67 

Specificity (%) 45.65 34.7 60.29 86.95 2.17 60.8 70.65 45.65 

MCC 0.2421 0.24 0.253 0.493 0.05 0.178 0.466 0.079 

Tp: True positive, Tn: True negative, Fp: False positive, Fn: False negative 
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The accuracy of computational tools was improved by combining results from multiple 
tools [33]. So, we have used a ranking strategy to prioritize nsSNPs based on deleterious scores 
obtained from the computational prediction methods, including SIFT, PhD-SNP, PolyPhen2, 
SNPs&GO, SNAP, FATHMM and, I-Mutant 3.0. PANTHER was not able to predict the scores 
for the number of nsSNPs. The ranking scheme for prioritizing of mutations in this study is as 
follows: Variants predicted to be deleterious by zero or one of the seven tools were categorized 
as rank1, variants predicted to be deleterious by two or three of the seven tools were categorized 
as rank2, variants predicted to be deleterious by four or five of the seven tools were categorized 
as rank3, and rank4 variants predicted to be deleterious by six or seven tools. Mutations with 
ranking scores 3 and 4 were considered to be deleterious. Computational predictions for each 
SNP along with their ranking score are shown in the S1 Appendix. 

The variant was classified to be extremely deleterious if it was predicted as deleterious by 
all the computational tools, including SIFT, PhD-SNP, PolyPhen2, SNPs&GO, SNAP, 
FATHMM, I-Mutant 3.0, and Align-GVGD. A total of 14 and 19 SNPs in BRCA1 and BRCA2, 
respectively, were categorized to be extremely deleterious. Among these mutations, 10 
(Cys39Ser, Cys64Gly, Phe861Cys, Arg1699Pro, Trp1718Cys, Phe1761Ser, Gly1788Asp, 
Val1804Gly, Trp1837Gly, and Trp1837Cys) and 12 (Leu2510Pro, Asp2611Gly, Tyr2660Asp, 
Leu2686Pro, Leu2688Pro, Tyr2726Cys, Leu2792Pro, Gly2812Glu, Gly2813Glu, Arg2842Cys, 
Asp3073Gly and Gly3076Val) were VUSs in BRCA1 and BRCA2, respectively. These SNPs 
can seriously disrupt the structural and functional features of BRCA proteins. 

Amino acids participating in important biological processes, especially those located in 
enzyme-active sites or involved in protein-protein interactions, tend to be more evolutionarily 
conserved compared to the other residues. Therefore, mutations occurring at evolutionarily 
conserved sites are thought to be more deleterious compared to the ones at non-conserved 
positions. For this reason, we focused on substitutions predicted to be deleterious (mutations 
rank 3 and rank 4). Based on results obtained from the ConSurf server [27], most of the 
predicted deleterious mutations showed a significantly higher evolutionary conservation 
compared to the neutral ones (S1 Appendix). 

The human BRCA2 - DSS1 model was generated using modeller, and the best model was 
selected based on the lowest DOPE score. The superimposition of the template crystal structure 
of the BRCA2/DSS1 with predicted structure showed backbone RMSD 0.862Å. Ramachandran 
plot generated by PROCHECK [29, 30] showed that 82.5 %, 12.7% and 3.6% of the residues 
are in most favoured, allowed, and generously allowed regions, respectively (Fig. 3). These 
results showed that the obtained 3D model of BRCA2 is relatively satisfactory. 

 
Figure 3: The quality assessment of the model generated with modeller. A) Ramachandran plot analysis 
of modeled BRCA2 structure generated by PROCHECK B) Comparison of model (pink) and crystal 
structure of mouse BRCA2 (green) 
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For stability analysis by FoldX, the human BRCA2-DSS1 model and the 3D structures of 
the BRCT repeat region, and ring domain of BRCA1 protein (PDB code: 1JNX and 1JM7) were 
used [34, 35]. At first, stability analyses with FoldX were restricted to mutations in which the 
atomic coordinates and the related experimental data were available in the IARC database 
(BRCA1=35, BRCA2=30, total=65). In this analysis, mutations with a free energy change 
greater than +3.0 kcal/mol were considered to be significant, based on previous experimentally-
tested designs [31, 32]. The applied criteria (ΔΔG>3 kcal/mol) for the stability analysis of 
variants in the present study possessed 96% specificity, 48% sensitivity [36]. 

Consequently, in the next step, we analyzed mutations in BRCA1 N- and C-terminus and 
BRCA2 C-terminus with unknown clinical importance. As depicted in figure 4, mutations with 
free energy changes greater than +3.0 kcal/mol are pathogenic. These data suggest that these 
mutations may play major roles in driving the pathogenic related states of proteins (Fig. 4 and 
S1 Appendix). 

 

 
Figure 4: VUSs are predicted to destabilize the tertiary structure of BRCA1 (A) and BRCA2 (B) and so, 
considered deleterious. 
 
 

DISCUSSION 
 
SNPs play an important role in understanding the genetic basis of many multifaceted human 

disorders. However, the identification of functional SNPs remains a great challenge. 
Consequently, here, we performed an in silico analysis with the purpose of discrimination of 
pathogenic mutations from neutral ones. Different widely-used evolutionary-based methods 
including SIFT [17], PolyPhen2 [18], PhD-SNP [19], SNAP [22], SNPs&GO [23], PANTHER 
[21], I-Mutant [26], FATHMM[20] and Align-GVGD [24, 25] were employed for determining 
the functional significance of nsSNPs. Stehr et al. demonstrated that destabilizing mutations in 
tumor suppressor genes, which preferably take part in the core domains of proteins are 
frequently correlated with cancer [37]. Accordingly, to quantify the destabilization effect of 
mutations on BRCA1/2 tumor suppressor genes, we computed the protein stability change upon 
these mutations utilizing I-Mutant [19] and the empirical forcefield FoldX [31, 32]. In the FoldX 
approach, mutations with a ΔΔG>3 kcal/mol were considered highly destabilizing [36]. 
Comparing FoldX predictions with existing experimental data in the IARC database 
demonstrated approximately 96% specificity and 48% sensitivity. Although it has been 
demonstrated that FoldX is currently one of the best methods for calculating stability changes 
upon mutation, the method could not identify all potentially harmful mutations. The results 
presented in this study showed that alterations in protein function due to mutations do not 
always correlate to alterations in stability. For instance, the BRCA1 Cys1787Ser variant was 
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classified as class 5 (definitely pathogenic) based on IARC classification criteria [38]. However, 
in this study, as well as previous research [39], this mutation has no serious unstabilizing effects 
on protein stability. Cancer-predisposing mutations that destabilize the BRCA1 structure likely 
to abolish the ability of BRCA1 for transcriptional activation [40]. Val1714Gly mutation 
abolishes the transcriptional activation by BRCA1 in yeast and mammalian cells [41, 42]. The 
results of this study showed that at least part of the function defect associated with this mutation 
is likely due to protein destabilization. It has been shown that BRCA1 Gly1788Val mutation is 
associated with a significant decrease in transcription activation assay. However, NMR 
spectroscopy results indicate that this residue is essential for the stability of the BRCT domain 
of BRCA1 [43]. This result is also consistent with our finding that Gly1788Val strongly 
destabilizes the wild-type BRCA1 protein. The evolutionary analysis also demonstrated that 
mutations in the conserved region often lead to instability and function impairment. This trend 
is in agreement with previous studies, which found that pathogenic mutations occur more 
frequently in the conserved region [14, 44-46]. 
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