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ABSTRACT 
 

Human papillomaviruses (HPV) are a group of strong human carcinogen viruses considered 

to be the fourth leading cause of mortality among women in the world. HPV is the most 

important cause of cervical cancer, which is the second most common cancer in women living 

in low and middle-income countries. To date, there is no effective cure for an ongoing HPV 

infection; therefore, it is required to investigate anticancer drugs against this life-threatening 

infection. In this study, we collected more than 100 plant-derived compounds with anti-cancer 

and antiviral potentials from a variety of papers. Smile formats of these compounds (ligand), 

were harvested from PubChem database and examined based on the absorption, distribution, 

metabolism, excretion, and toxicity properties by programs such as Swiss ADME, admetSAR, 

and pkCSM. Twenty compounds, which were likely to be the HPV16E6 inhibitor, were selected 

for docking calculations. We examined these natural inhibitors against the HPV16 E6 oncogenic 

protein. Eventually, three of these compounds were used as the most potent inhibitors 

(Ginkgetin (peculiarly), Hypericin and Apigetrin) were probably used as the possible source of 

cancer treatment caused by E6 oncoprotein. In this research, we conducted the docking 

calculations by Autodock 4.2.6 software. Docking analysis showed the interaction of these 

plant-originated inhibitors with E6AP, p53, and Myc binding sites on the E6 oncoprotein which 

support the normal function of E6AP, p53, and Myc.  
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INTRODUCTION 
 

Over 100 types of cancers affect humans, which is the second-leading cause of mortality 

worldwide and responsible for 8.8 million deaths in 2015. Expected by 2020, this cancer causes 

up to 10 million deaths (World Health Organization report) [1]. Some researchers believe that 

most cancers (about 90-95%) are due to genetic mutations caused by environmental factors and 

lifestyle, and the remaining 5-10% are due to inherited genetics [2, 3]. Worldwide, 

approximately 18 percent of mortality from cancer are related to infectious agents [4]. Inhibiting 

the activity of major transcription factors has shown to be a high potential approach for cancer 

treatment [5, 6]. 



 

 

 

 

Nabati et al., / Mol Biol Res Commun 2020; 9(2):71-82    DOI: 10.22099/mbrc.2020.36522.1483  MBRC 

http://mbrc.shirazu.ac.ir                                                                72                                                               

  

Papillomaviruses are a group of the most commonly found viruses that could cause cancer 

in humans. It has been reported that some strains of human papillomavirus (HPV) cause cervical 

cancer [7]. Over 200 different HPV types have been identified to infect human and are classified 

into two different groups: high risk and low risk [8]. High-risk genotypes, including HPV16, 18, 

45 and 33 (63, 11, 6, and 4%, respectively) are more commonly associated with cervical 

cancers, whereas low-risk types such as HPV6 and 11, typically cause genital warts [9, 10].  

High-risk types of HPV are the causative agents of over 99.7% of cervical cancers [11]. 

Human papillomavirus type 16 is known as a major causative factor in the development of 

cervical carcinomas [12]. Estimates of the global cancer burden indicate that cervical cancer is 

increasingly prevalent in low- and middle-income countries [13-17]. 

HPVs are a group of small non-enveloped, icosahedral tumor viruses that possess a circular 

double-stranded DNA genome with a size of 55 nm in diameter that infects cutaneous or 

mucosal epithelial cells, causing papillomata or warts on the skin, genital tissues, and the upper 

respiratory tract [18]. The HPV genome consists of approximately 8000 base pairs  [19]. 

Functionally, the genome of the HPV is divided into three distinct regions. The first long control 

region (LCR or URR (upstream regulatory region)) is responsible for the regulation and control 

of viral DNA replication and transcription. The early region contains six ORFs (open reading 

frames) and encoding non-structural viral regulatory proteins and viral replication (E1, E2, E4), 

three of which, E5, E6, and E7, are oncogenic. The late genes region encodes structural proteins 

involved in the formation of the viral capsid proteins L1 and L2, and varies between different 

HPV types, which is necessary for virion transmission and spread [20, 21]. 

The E6 is one of the two oncoproteins expressed in the oncogenic human papillomavirus 

types 16 and 18, which plays a major role in malignant transformation, carcinogenicity, and 

immortality [22-24]. The E6 is an oncoprotein composed of polypeptides made up of 150 

amino acids long with a molecular weight between 16-18 kDa and two Cys-X-X-Cys motifs that 

allow the formation of two zinc fingers [25, 26]. E6 oncoproteins are expressed as a full-length 

(16-18 kDa) protein as well as its splice isoform E6* (7 kDa), in the host cells [27]. It has been 

shown that the expression of the HPV16 E6* isoform increases oxidative stress and induces 

oxidative DNA damage in the host cells [28, 29]. 

 E6 oncoprotein interacts with the binding of several cellular proteins via two known 

binding motifs, namely, the acidic LXXLL motif (e.g., E6-AP, c-Myc, p53), PDZ domain (e.g., 

hScrib, hDlg, MAGI-1 (-2, -3), MUPP1, PATJ, and PTPN3) and unknown E6 binding motif 

(e.g., FADD, Gps2, hADA3, and Procaspase) [30-32]. Mainly, this oncoprotein by forming 

complexes with cellular proteins, stimulates the destruction of many host cell's key regulatory 

proteins such as E6AP, p53, and c-Myc, which could result in cancer. 

P53 is the most important human protein, which is involved in cell cycle regulation, 

apoptosis, as well as playing a significant role in maintaining genetic stability conditions. When 

the human cell's genome is damaged for any cause, and these damaged cells do not enter the cell 

proliferation cycle, the rate of p53 increases rapidly and induces apoptosis of the damaged cells 

[21]. High-risk E6 oncoproteins mediate the ubiquitination and cellular ubiquitin ligase protein 

called E6AP (E6-Associated Protein) that catalyzes the degradation of p53 through the 

formation of a heterotrimeric complex (E6/E6AP/p53). Direct binding between E6, p53, and 

E6AP forms this complex. [33]. When the content of p53 decreases, after degradation by E6 

oncoprotein of the host cells, they cannot ordinarily repair DNA damages, which ultimately 

leads to malignancy. 

Myc (transcription factor) is one of the E6 partners that regulates the expression of up to 10-

15% of the cellular genes controlling metabolic processes, post-translational modifications, 

macromolecular synthesis, cellular proliferation, and apoptosis [34]. hTERT (human telomerase 

reverse transcriptase ), the catalytic subunit of telomerase, is one of the Myc targets [35]. 

Telomerase is a complex of ribonucleoprotein enzymes, consisting of two core subunits, called 

template RNA subunit (human telomerase RNA (hTR)) and a catalytic protein subunit 

(hTERT), that extends telomeric DNA. The telomere DNA is a repetitive and nucleoprotein 

complex located at the ends of eukaryotic chromosomes with approximately 5,000 to 15,000 

http://mbrc.shirazu.ac.ir/
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nucleotides length in humans. Without the telomerase activity, the linear chromosomes of 

cellular DNA serially are shortened with each cell cycle and get divided by 100 to 200 

nucleotides, then cells enter the mortality stage [35, 36]. New studies have shown that cells 

infected with E6 protein hr-HPV use c-Myc and directly interact with hTERT, leading to 

increased phosphorylation of RNA Pol II and induced epigenetic histone modifications of the 

hTERT promoter, therefore it triggers the activation of the hTERT promoter, which increases 

the telomerase activity [37]. Increased expression of hTERT in the most human cancers, 

including HPV-positive cervical cancer, prevents the shortening of telomere length, leading to 

cell immortalization. 

In this study, twenty different natural compounds from several plant sources for molecular 

docking calculations were collected (Supplement file, Table S1), and we investigated the 

molecular interaction of the HPV16 E6 protein with plant-originated inhibitors around E6AP, 

p53, and Myc binding site respectively. 

 

 

MATERIALS AND METHODS 
 

Computer programs: Bioinformatics programs such as Chimera 1.12 [38], Molegro 

Virtual Docker v 6.0 (MVD), YASARA Energy Minimization, Hex software, LigPlot+ (v.1.4.5) 

were used [39] and Molecular docking calculation was performed by AutoDock tools 1.5.6 and 

MGL tools 1.5.6 packages [40,41]. Furthermore, online resources such as Herbmed, 

Sciencedirect, Pubmed, Google Scholar, Pubchem database [42], Pkcsm [43], Swissadme [44], 

admetSAR [45], Protein Data Bank, NCBI, Phyre 2 server [46], ProSAWeb [47], Verify-3D 

[48], ProQ [49], Procheck [50], and ERRAT serve [51] and Ramachandran plot [52] were used 

for data collection. 

 

Docking Procedure: More than 100 natural compounds representing antiviral and 

anticancer activity were collected from the literature; retrieved from http://www.herbmed.org, 

Pubmed, Google Scholar, ScienceDirect. All the natural compounds reported were examined 

based on Absorption (Log s), high gastrointestinal absorption (GI), distribution (Log D), 

metabolism (CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2), excretion, and toxicity 

(Hepatotoxicity, hERG (I, II) inhibitor, AMES Toxicity, Carcinogens, and Lipinski [53], 

Lipophilicity (Log p), polar surface area (Å²) by online servers such as Swiss ADME, 

admetSAR, and pkCSM.  

The compounds were not supposed to inhibit cytochromes (CYP3A4, CYP2D6, 

CYP2C9, CYP2C19, and CYP1A2) and have high water solubility )Log s<6), Log p be in the 

range of - 0.7 < log p < 5, and TPSA be ranging 20 < TPSA < 130 Å². After the filtering 

operation by online servers, 20 of the 100 natural compounds were selected for molecular 

docking calculations (Table S1). Chemical structures of twenty natural compounds were 

retrieved from the PubChem database. The structures were downloaded in smiles format and 

converted to PDB using Chimera 1.12 then PDB format's structures were minimized by chimera 

1.12 and were saved in PDB files. PDB file was submitted to ADT (AutoDock Tools is a set of 

commands implemented within the Python Molecular Viewer (PMV)) for PDBQT file 

preparation. Also, docking calculations were carried out on ligands by ADT (1.5.6), 

AutoDock4.2 program operated Docking calculation. Three-dimensional structure of E6 (PDB 

ID: 4GIZ) was retrieved from the PDB database. Initially, extra chains (A, B, and D), water 

molecules, and ligands of PDB file (4GIZ) retrieved from Protein Data Bank were removed by 

MVD. Finally, the C chain (4GIZ) was submitted to the MVD for optimizing/repair, then the 

PDB file was evaluated and passed to Autodock Tools (ADT ver.1.5.6) for PDBQT File 

preparation. Therefore, non-standard residues were removed. Only polar hydrogens were 

maintained, and Gasteiger charges were computed for protein atoms, Kollman charges were also 

assigned by ADT, The PDB file was prepared for Docking with Autodock 4.2.6. Initially, for 

the studies of molecular Docking simulations E6 with Myc, we predicted Myc 3D protein 

http://mbrc.shirazu.ac.ir/
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structure by online servers. Since the three-dimensional structure (3D) of Myc retrieved from 

the protein data bank, (ID: 1NKP) had a problem, owing to four amino acids (30, 31, 32, and 

33) to be in the error region.  

The Myc Ref.sequence (NP_002458.2) was harvested from NCBI. For the modeling of the 

3D structure of the Myc protein, Phyre 2 server was used, and the result of the Phyre 2 server 

query was as following: coverage of the target-template alignment was 99.61% confidence with 

98% identity. Structural refinement and energy minimization of the predicted model was carried 

out using YASARA Energy Minimization program. The total energy minimization for the 

refined structure obtained from the YASARA program was -66671.8 kJ/mol (score, 2.40), 

whereas, before energy minimization, it was -50950 kJ/mol (score, 0.52). The refined model 

reliability was assessed through Procheck, ProSA-Web, ProQ and, Verify-3D. Finally, Myc 3D 

structure was refined for further confirmation by the ERRAT online server. The Ramachandran 

plot for the Myc 3D structure was created by Phyre 2 server was as following: the 97.6% 

residues were in the favorable regions, 2.4% residues were in the allowed region, and no amino 

acids were found in the outlier region (Fig. 1). 

 

 
Figure 1:  Validation results for the modeled c-Myc (Ramachandran plot of model) 

 

Determining the binding sites of E6 to E6AP, p53, and Myc: We explained the atomic 

interaction between plant-originated ligands and high-risk HPV16 E6 oncogenic protein. These 

http://mbrc.shirazu.ac.ir/
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natural plant compounds might prevent and disable E6 oncoprotein from interacting with E6AP, 

p53, and Myc proteins. However, when E6 interacts with host E6AP, p53 and Myc protein, it 

plays important roles in the induction of cell immortality All residues were involved in the 

binding of E6 to E6AP consist of R10, K11, V31, Y32, L50, C51, V53, R55, V62, L67, Y70, 

S74, R77, H78, L100, R102, Q107, R129, and R131. Residue interface in hydrophobic 

interactions such as: V31, Y32, L50, C51, V53, V62, L67, Y70, L100, R102, Q107, R131 and 

residue interface in polar interactions involve side-chain groups such as R10, R55, S74, R77, 

H78, R129, R131 and residue interface in polar interactions involve backbone groups (main 

chain) such as K11, C51, R102, and R131 [54]. Autodock calculated the region of interest for 

docking runs; the grid map was formed based on polar residues in the binding site of receptor 

(E6 oncoprotein) proteins to E6AP for the docking process. The dimension of the grid map was 

calculated based on polar residue in the binding site using AutoGrid (part of the AutoDock 

package) and drawn. The dimension of the grid map was given as x-dimension = 56, number of 

points in y-dimension = 50 and number of points in z-dimension = 86 points in a grid space of 

0.375 Å, centers of grid box: X = 2.851; Y = 50.522; Z = 27.126. All residues were involved in 

the binding of E6 to p53 including Q6, E7, R8, R10, Q14, E18, Y43, D44, F47, D49, L100, and 

P112. Residue interface in hydrophobic or non-polar interactions were including Q6, E7, R8, 

R10, Q14, E18, Y43, D44, F47, D49, L100, and P112. Residue interface in polar interactions 

involve side-chain groups were including E7, R10, Q14, E18, D44, D49 and residue interface in 

polar interactions involve backbone groups (main chain) were including Q6, E7, R8, R10, and 

E18 [55]. 

AutoGrid was used to create a grid map; the grid map was formed based on polar residues 

in the binding site of receptor (E6 oncoprotein) proteins to p53 for docking process. The 

dimension of the grid map was number of points in x-dimension = 64, number of points in y-

dimension = 86 and number of points in z-dimension = 106 points in a grid space of 0.375 Å, 

centers of the grid box: X = 6.00; Y = 61.00; and Z= 23.700.  

HEX 8.0.0 v 2013 software was used to predict the E6 interaction to Myc. It was indicated 

that E6 is interfacing with Myc interact through domain Z finger-1 (N-Terminal). Residues 

around such as F2, P5, R8, and Y54 interacted with human Myc protein. The region of the grid 

map was used by Autodock in docking runs as defined and calculated by AutoGrid. The grid 

map was formed based on all the amino acids of E6 oncoprotein that are involved in the Myc 

binding site was formed. The dimension of the grid map was number of points in x-dimension 

=50, number of points in y-dimension =50 and number of points in z-dimension =50 points in a 

grid space of 0.375 Å, centers of the grid box: X = 3.200; Y = 55.00; and Z = 13.00. 

 

Docking Analysis of E6 oncoprotein with plant-derived inhibitors: Molecular docking 

operation was performed in various conformations on all the plant-originated inhibitors with 

different binding energy. Finally, the compounds with the lowest energy conformation of the E6 

were selected. Upon docking, the binding energies of E6 oncoprotein with plant-originated 

ligands were obtained; the complete detail of interactions are provided in Table 1.  

The PDB files (receptor and ligands) prepared for docking operation were submitted to 

ADT for PDBQT file preparation. Docking calculations were carried out on receptors such as 

delete water molecules, non-standard residues were removed, only polar hydrogen was 

maintained, and Gasteiger charges were computed for protein atoms, Kollman charges were also 

assigned. As well as Docking, calculations on ligand such as computing Gasteiger charges, 

merged non-polar hydrogens, found aromatic carbons, detected rotatable bonds and set 

TORSDOF carried out by ADT automatically. After docking calculations, PDBQT files were 

saved for docking computations with the AutoDock4.2 program. The grid maps representing the 

receptor proteins in the docking process were calculated (x, y, and z dimension) using AutoGrid 

(see above). The Lamarckian genetic algorithm (LGA) was applied to the interaction pattern 

between the receptor and selected natural metabolite inhibitors (ligand), with 100 genetic 

algorithms (GA) runs. Other settings for the Docking process was considered a default, such as 

the population size of 150 was determined for each 25 × 105 energy evaluations, 27,000 

http://mbrc.shirazu.ac.ir/
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maximum number of generations, 0.02 rate of gene mutation, and a crossover rate of 0.8 were 

used for the LGA. 
 

Table 1: The result of docking analysis between ligands isolated from plant-originated compounds with 

the binding sites of an E6 Oncoprotein to E6AP, P53, and Myc 

Row Compound 

name 

Docking 

Scorei 

(kcal/mol) 

Inhibition 

constant 

(μM) 

Number of 

hydrogen 

bonds 

Residues involved in hydrogen 

bonding 

1 Apigenin E6AP -5.8 57.64 2 Leu67, Cys51 

 P53 -6.37 21.37 2 Leu67, Cys51 

Myc -5.57 98.25 2 Arg8, Arg55 

2  Apigetrin E6AP -6.37 21.27 4 2i Cys51, Arg55, Pro5 

 P53 -7.61 2.63 6 Pro5, 3 Cys51, 2 Arg55 

Myc -6.13 32.2 3 2 Phe2, Asn58 

3 Aplysin E6AP -6.01 39.59 -------- --------------------- 

 P53 -6.26 32.23 1 Trp132 

Myc -5.53 89.11 1 Gln3 

4 Curcumin E6AP -5.78 58.09 2 2 Cys51 

 P53 -6.21 28.24 2 2 Cys51 

Myc -6.49 17.51 3 Tyr54, Asp56, Gly57 

5 Epicatechin E6AP -5.4 109.54 5 2 Pro5, Ile52, Arg55, Tyr54 

 P53 -5.95 43.64 5 2 Pro5, Tyr54, Arg55, Ile52 

Myc -5.69 67.42 4 Tyr54, Arg55, Arg8, Pro5 

6 Eurycomanone E6AP -6.13 32.25 3 2 Cys51, Tyr32 

 P53 -6.81 10.25 3 2 Cys51, Tyr32 

Myc -5.45 101,28 3 Pro5, Arg10, Arg8 

7 Genistein E6AP -6.68 12.74 3 Ser71, Cys51, Tyr32 

 P53 -6.66 13.03 2 Ser71, Tyr32 

Myc -6.26 25.74 5 3 Arg8, Arg55, Tyr54 

8 Gingerol E6AP -4.58 436.16 2 2Cys51 

 P53 -5.03 205.08 4 2Arg8, Arg55, Tyr54 

Myc -4.46 534.89 3 Arg8, Arg10, Arg55 

9 Ginkgetin E6AP -8.45 0.642 5 2 Arg55, Cys51, Val 53, Tyr 60 

 P53 -8.46 0.632 5 2 Arg55, Cys51, Val 53, Tyr 60 

Myc -7.22 5.11 4 Pro5, 3Arg8 

10 Hypericin E6AP -7.15 5.7 5 2 Gln6, Tyr54, Ile52, Pro5 

 P53 -7.24 4.97 5 Ile52, Tyr54, 2 Gln6, Pro5 

Myc -6.67 12.99 3 Ile52, Pro5, Arg55 

11  

Isonoruon 

E6AP -5.78 58.08 1 Cys51 

 P53 -5.81 55.3 1 Cys51 

Myc -5.65 72.48 1 Arg8 

12  

Klaineanone 

E6AP -6.41 20.12 3 3 Cys51 

 P53 -6.8 10.44 3 Ile101, Lys115, Ser97 

Myc -6.29 24.52 3 Ile52, Arg10, Tyr54 

13 L-Ectone E6AP -5.12 177.32 2 2 Cys51 

 P53 -5.28 134.39 1 Leu110 

Myc -5.05 198.99 1 Arg8 

14 Oleocanthal E6AP -3.79 1680 2 Leu67, Cys51 

 P53 -5.6 78.55 5 Tyr54, 2 Arg8, Gln6, Arg55 

Myc -5.43 105.11 4 Gln6, Arg8, Arg10, Tyr54 

15 Oleuropein E6AP -4.36 640.94 4 2 His78, Ser74, Arg131 

 P53 -5.02 208.38 3 Tyr70, Arg13, Cys51 

Myc -5.05 198.09 8 2 Gln6, 2 Arg8, 2 Arg55, Pro5, Arg10 

16 Piceatannol E6AP -5.3 129.35 3 Ser71, 2 Cys51 

 P53 -6.1 33.96 5 Lys115, Arg47, 2 Leu99, Ile101 

Myc -5.64 73.41 5 2 Glu18, 2 Asp4, Gln7 

17 Pterostilbene E6AP -5.74 61.921 1 Cys51 

 P53 -5.64 73.63 1 Cys51 

Myc -5.08 188.6 2 2 Asp4 

18 Quercetin E6AP -4.33 674.16 5 Ser71, Tyr32, Ile104, Ser74, Arg129 

 P53 -6.39 20.75 7 2 Leu99, Arg47, Lys108, 2 Asp49, Ile101 
Myc -5.29 132.96 6 2 Asn58, 2 Glu18, Gln3, Gly57 

19 Silibinin E6AP -6.89 8.88 4 2 Cys51, Arg8, Pro5 

 P53 -7 7.38 5 Gln14, 2 Arg8, Arg10, Gln6 

Myc -6.01 39.06 4 2 Arg55, Arg8, Pro5 

20 Tyrosol E6AP -4.33 672.1 2 Tyr32, Cys51 

 P53 -4.42 573.57 3 2 Asp4, Glu18 

Myc -4.63 402.47 2 2 Asp4 

+ Paclitaxel 

(Positive 

control) 

E6AP -5.99 40.87 2 Cys51, Ser74 

 P53 -7.59 2.73 4 Tyr32, Ile52, Arg8, Arg55 

Myc -5.4 110.55 4 2 Arg10, Arg55, Arg8 

(a) Indicates interactions between the binding sites of E6 to E6AP, P53, and Myc with natural inhibitors. (b)The number before the 
amino acids indicates the number of hydrogen bonds that amino acids of E6 establish with the ligand. 
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RESULTS  
 

Docking analysis showed that all 20 natural ligands bind to three binding sites on HPV E6 

oncoproteins that can help the restoration of the normal functioning of tumor suppressor 

proteins, and the lowest binding energy conformation was analyzed and presented in Table 1. It 

was showed that interaction of all 20 natural ligands with HPV E6 oncoproteins, and among 

them, Ginkgetin (GK) (especially), Hypericin, and Apigetrin have effectively inhibited three 

binding sites on HPV E6 oncoproteins with minimum binding energy. 

Among the three natural ligands (GK, Hypericin, and Apigetrin) selected, GK most 

effectively with the lowest binding energy interacted with all three binding sites E6AP, p53, and 

myc on E6 oncoproteins. (The three-dimensional structure of these interactions are shown in 

Figure 2 (A, B, and C respectively). GK showed the lowest binding energy (-8.45 kcal/mol) 

with the E6AP binding site on HPV-16 E6 protein and inhibition constant (0.642 μM) for the 

protein-ligand complex. 

  

 

 
Figure 2: 3D Molecular Interactions between E6 binding sites to E6AP (A), p53 (B), and c-Myc (C) with 

Ginkgetin 

 

 

The four amino acid residues of HPV-16 E6, (i.e., Arg 55, Cys 51, Val 53, and Tyr 60) were 

observed to form five hydrogen bonds with GK during protein, ligand interactions (Fig. 3A). 

Similarly, the binding energy of GK with the p53 binding site on HPV-16 E6 protein was 

showed to be a minimum binding energy of -8.46 kcal/mol with an inhibition constant of 0.632 

μM. GK formed five hydrogen bonds with four amino acid residues (i.e.; Arg 55, Cys 51, Val 

53, and Tyr 60) from the HPV-16E6 protein (Fig. 3B). In the case of the binding energy of GK 

with Myc binding site on HPV-16, E6 protein interacted with two amino acid residues from the 

receptor (i.e., Pro 5, and Arg 8) by forming four hydrogen bonds (Fig. 3C), the binding energy 

of the interaction was -7.22 kcal/mol, and the inhibition constant was 5.11 μM (Table 1). 

The study showed that GK is an effective inhibitor of the binding sites available on the E6. 

This computational approach demonstrates the effectiveness of GK as an anticancer agent that 

needs to be explored further until we learn more about how to use GK or others natural products 

for designing novel drugs against cervical cancer. 

http://mbrc.shirazu.ac.ir/
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Figure 3: 2D Molecular Interactions between E6 binding sites to E6AP (A), p53 (B), and c-Myc (C) with 

Ginkgetin. The hydrogen bonds are shown as dash lines and hydrophobic contacts are indicated with half-

moon 

 

 

DISCUSSION 
 

Approximately 1.6 million of the 2 million new cases of cancer each year are caused by 

infection with carcinogenic viruses. This issue has caused to focuses on new treatments for 

these viruses and their mechanisms of action [1]. Carcinogenic viruses, especially oncogenes 

produced by them with several different molecular mechanisms modify normal cells to cancer 

cells. Viral oncoproteins like E6, form complexes with cellular proteins, causes broad biological 

changes including; regulating cellular pathways, preventing shortening of the telomeres, 

immortalization, host cell differentiation, regulating growth factors, degradation and 

inactivation tumor suppressor, interference with DNA repair efficiency, and apoptosis, promote 

cell transformation, increase of the host genetic and epigenetic alterations etc. In addition, 

carcinogenic viruses cause genetic disorders by entering their genome into host cell 

chromosomes [30,56,57]. Although several viruses can cause various tumors in animals, only 

seven kinds of them are linked with cancer in humans [1, 58]. 

Cervical cancer is one of the most dangerous and deadly cancers in women caused by HPV. 

There are several options for the treatment of early-stage cervical cancer such as surgery, non-

specific chemotherapy, radiation therapy, laser therapy, hormonal therapy, targeted therapy, and 

immunotherapy, but there is no effective cure for an ongoing HPV infection. Herbal extracts are 

one of the therapeutic areas for cervical cancer; many researchers have studied the effect of 

plant metabolites on cervical cancer treatment. Researchers have demonstrated that curcumin, 

epigallocatechin-3-gallate (EGCG), jaceosidin, resveratrol, indole-3- carbinol, withaferin A, 

artemisinin, ursolic acid, ferulic acid, berberin, resveratrol, gingerol, and silymarin compounds 

are possible effective agents for cancer treatment [59,60]. Traditionally, different plant-
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originated compounds have been identified and tested as promising resources against cancer 

caused by HPV. 

 Advancements in computational biology and bioinformatics are useful to the investigation 

of novel inhibitors from herbal medicines against cancers like cervical cancer. Computer-aided 

docking is a valuable tool for gaining an understanding of the binding interactions between a 

ligand (small molecule) and its receptor (macromolecule) and has emerged as a reliable, cost-

effective, time-saving and fast technique for the discovery of novel drugs [61]. Molecular 

docking provides the following three main goals: predicting the ligand binding site to the 

receptor, virtual screening, and binding affinity calculation [62]. Molecular docking studies 

further help to understand the various interactions between the small molecules and particular 

receptor targets binding sites and is used as a standard computational tool to design novel potent 

inhibitors. 

 The high-risk HPV type 16 has oncoprotein (E6), that need to stay blocked for various 

reasons, including the fact that E6 is able to be inactivated tumor suppressor proteins (p53) by 

the E6AP human protein, then causes p53 degradation by the proteasome pathway. In addition, 

E6/ Myc interactions cause to induce the transactivation hTERT promoter and the increase of 

telomerase activity, finally leading to tumor cells immortalization. Therefore, E6 oncoprotein is 

a very important goal in designing new inhibitors against cervical cancer.  

GK is a natural bioflavonoid isolated from leaves of Ginkgo biloba (Ginkgoaceae). Ginkgo 

biloba (GB) is originated in Asia, particularly in southeast China, where more than 4000 years it 

has been used as traditional herbal medicine. Extracts from GB leaves contain various 

glycosides and terpenoids and have been found to exert different pharmacological actions. 

Among several compounds, isolated from GB leaves, GK has shown various biological 

functions including the potent anti-inflammatory and anti-viral, antifungal, neuroprotective, 

anti-influenza, anti-arthritic and antitumor activities [63]. Researchers have reported that GK 

inhibits the growth of prostate and breast cancer cells [64,65], and inhibits the proliferation of 

human leukemia cells [66]. Also, GK induces autophagy and apoptosis in cancer cells [67, 68]. 

In the present study, bioinformatics simulation showed the anticancer properties of GK against 

cervical cancer. Generally, GK by blocking the binding site of E6 oncoprotein to E6AP, p53, 

and Myc, will support the normal function of these intracellular proteins. 
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