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ABSTRACT 

 
Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been 

frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their 
effect could provide new insights into the underlying mechanism of fluconazole resistance.  
Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine 
(Erg11p_LEU321PHE) and Erg11p_Serine457Proline (Erg11p_SER457PRO) are three 
fluconazole-resistant suspected mutations reported in clinical isolates of C. albicans. Therefore, 
our study aims to investigate the role of these suspected mutations in fluconazole resistance 
using in-silico methods. Molecular dynamics simulation (MDS) analysis of apo-protein for 25ns 
(nanosecond) showed that suspected mutant proteins underwent slight conformational changes 
in the tertiary structure. Molecular docking with fluconazole followed by binding free energy 
analysis showed reduced non-bonded interactions with loss of heme interaction and the least 
binding affinity for Erg11p_SER457PRO mutation. MDS of suspected mutant proteins-
fluconazole complexes for 50ns revealed that Erg11p_SER457PRO and Erg11p_LEU321PHE 
have clear differences in the interaction pattern and loss or reduced heme interaction compared 
to wild type Erg11p-fluconazole complex. MDS and binding free energy analysis of 
Erg11p_SER457PRO-fluconazole complex showed the least binding similar to verified 
mutation Erg11p_TYR447HIS-fluconazole complex. Taken together, our study concludes that 
suspected mutation Erg11p_THR285ALA may not have any role whereas Erg11p_LEU321PHE 
could have a moderate role. However, Erg11p_SER457PRO mutation has a strong possibility to 
play an active role in fluconazole resistance of C. albicans.  
 
Keywords: Candida albicans; Drug resistance; Suspected mutations; Molecular docking 
 
 

INTRODUCTION 
 
Drug resistance acquired by opportunistic fungal pathogen Candida albicans is often 

observed in clinical isolates. Invasive infections in humans are widely caused by the drug-
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resistant C. albicans. This infection leads to high morbidity and mortality rate and reported to be 
the fourth most common nosocomial bloodstream infection [1-2]. Azole antifungals which were 
discovered around 40 years ago are the largest class of antifungal agents that are widely used in 
clinical practice. Among the azole drugs, fluconazole is commonly used as a first-line drug for 
the treatment of Candida infections due to its low toxic effect and tolerability [3]. The primary 
target of fluconazole is the inhibition of lanosterol 14α-demethylase which is encoded by the 
ERG11 gene and is responsible for the synthesis of a major lipid component ergosterol in C. 
albicans. Inhibition of this enzyme leads to the depletion of cell membrane ergosterol which 
severely affects the integrity of the plasma membrane [4]. Subsequently, essential molecules leak 
out from Candida cells leading to its highly reduced growth or death.   

Drug resistance to fluconazole of Candida species has been increased in the past two decades. 
Fluconazole resistance of C. albicans was first reported in the late 1980s. According to a 2019 
report by the Centers for Disease Control and Prevention (CDC), the United States of America, 
fluconazole-resistant Candida species accounts for 44,800 cases and 2,200 deaths. Studies have 
shown that multiple and diverse mechanisms including drug efflux pumps, overexpression of 
drug targets, target alterations and metabolic bypasses are responsible for drug resistance in C. 
albicans. Among these, drug target alterations due to the mutations in certain genes play a critical 
and significant role in developing antifungal drug resistance [4]. Importantly, point mutations in 
the ERG11gene of C. albicans are found to be associated with fluconazole resistance and the 
corresponding mutated lanosterol 14α-demethylase showed reduced binding affinity to 
fluconazole [5]. Approximately, 160 residue mutations have been reported in the Erg11 protein. 
However, only 10 of those mutations have been confirmed to be involved in fluconazole 
resistance [6].  

In the modern era, in-silico techniques play a very important role in the biological system 
worldwide. In-silico mutation techniques are used to develop mutations in protein crystal 
structure to have insights into the conformational changes and stability of the proteins [7]. 
Currently, in-silico techniques are widely used for predicting various biological mechanisms like 
drug sensitivity and resistance, protein-protein interactions and DNA-protein interactions. The 
amino acid substitutions in Erg11 protein is one of the most important mechanisms contributing 
to azole resistance in C. albicans [8]. The study of residue mutations in Erg11p will help us in 
identifying the crucial amino acids that may involve in drug resistance of C. albicans.  
As mentioned above, in-silico techniques would be of significant importance in exploring residue 
mutations involved in drug resistance before proceeding for rigorous wet lab experiments. Crystal 
structures available in the Protein Data Bank (PDB) have been very useful in this regard. Herein, 
we aim to study three suspected Erg11p mutations such as Erg11pTHR285ALA, 
Erg11p_LEU321PHE, and Erg11p_SER457PRO for their involvement in fluconazole resistance 
using in-silico methods [9, 10]. 

 
 

MATERIALS AND METHODS 
 

Selection of Erg11p residue mutations: The point mutations within the ERG11 gene that 
caused amino acid changes in Erg11 protein were selected based on previous reports as shown 
in Table 1. Three suspected mutations and a few experimentally verified mutations responsible 
for increased fluconazole minimum inhibitory concentration (MIC) were considered in this 
study [9-12]. 

 
Workflow and computational components: The workflow is shown as a flow chart (Fig. 

1). All the computational works were done on Intel® Xeon® E5-2667 v3 Processor CPU @ 
3.20 GHz with 16GB DDR4 RAM. Schrodinger 2017-1 and Desmond 2016-4 were compiled 
and run under Linux 16.04 LTS platform. 
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Table 1:  Erg11 protein mutations reported in the fluconazole-resistant Candida albicans 
S.No Residue Mutations Verified References 
1. Erg11p_TYR132HIS Yes [12] 
2. Erg11p_THE285ALA No [10] 
3. Erg11p_LEU321PHE No [9] 
4. Erg11p_SER405PHE Yes [12] 
5. Erg11p_TYR447HIS Yes [11,12] 
6. Erg11p_SER457PRO No [10] 
7. Erg11p_GLY464SER Yes [12] 
8. Erg11p_ARG467LYS Yes [12] 

 
 

 
Figure 1: Schematic representation of the workflow. 

 
Retrieval of protein and ligand structures: Crystal structures of C. albicans Erg11 protein 

(PDB ID: 5V5Z, monomer; 5FSA and 5TZ1, homodimer) were retrieved from the Protein Data 
Bank (PDB) [13]. 3D conformer of fluconazole (PubChem CID: 3365) was obtained from the 
PubChem database [14]. 

 
Protein alignment, preparation, validation and ligand preparation: Fasta format of the 

crystal structure sequences was downloaded and Clustal Omega multiple sequence alignment 
was used to align the structures with Erg11p sequence obtained from the Candida Genome 
Database (CGD) [15-17]. The obtained crystal structures contained co-crystal structures of 
ligands (azole drugs) and protoporphyrin IX (heme-containing small molecule). Maestro is a 
graphical user interface (GUI) of the Schrödinger suite. The protein preparation wizard in the 
Maestro (version 11.1.011) was used to prepare the protein structures by removing the ligand 
molecules and keeping protoporphyrin IX intact where heme plays a key role in Erg11p-drug 
interactions [18]. Thereafter, missing hydrogen atoms were filled.  Furthermore, missing 
residues were cross-checked using the sequence viewer to ensure that they are included in the 
sequence of the imported structures. Subsequently, missing loops were filled with the “Prime” 
tool which builds an accurate loop model using the missing residues. Finally, protonation states 
were assigned and restrained minimization was done using the force field OPLS_2005 (Protein 
Preparation Wizard, Schrödinger, LLC, New York, NY, 2017-1) [19, 20]. Prepared protein 
structures were subjected to MDS for 50ns (50000ps) and validation was done by calculating 
the values of RMSD, RMSF and internal energy. Fluconazole structure was prepared using the 
LigPrep protocol. Before preparation, the structures were energy minimized using the 
OPLS_2005 force field and allowed to generate all possible biological ionization states at pH 
ranging 7.0 ± 2.0. However, it was not allowed to generate tautomer and options were set to 
retain chirality and allowed to generate one structure per ligand (LigPrep, Schrödinger, LLC, 
New York, NY, 2017-1) [21, 22]. 

 
Generation of apo-protein, development of in-silico mutations and apo-protein 

mutation analysis:  Prepared protein structure (5V5Z) was used as the starting template for 
apo-protein (protein structure without ligand) generation by removing protoporphyrin IX. 
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Incorporation of suspected mutations Erg11p_THE285ALA_apo, Erg11p_LEU321PHE_apo, 
Erg11p_SER457PRO_apo and a verified mutation Erg11p_TYR132HIS_apo were done using 
mutation tool [23]. Also, structures containing protoporphyrin IX were used to incorporate 
residue mutations such as Erg11p_TYR132HIS, Erg11p_THE285ALA, Erg11p_LEU321PHE, 
Erg11p_SER405PHE, Erg11p_TYR447HIS, Erg11p_GLY464SER, Erg11p_ARG467LYS and 
Erg11p_SER457PRO (three-letter code of amino acids were used throughout the text; mutated 
amino acids are underlined). The side-chain conformations were selected according to the best 
available conformation using the rotamer tool in the Schrödinger suite. All the mutant structures 
were subjected to a short minimization to fix the minor changes which occurred due to 
mutations (Protein Preparation Wizard, Schrödinger, LLC, New York, NY, 2017-1) [24]. The 
generated apo-protein and mutant apo-proteins were subjected to an extended 25ns MDS for 
analyzing the structural stability of the protein that occurred due to mutations.  

 
 Molecular docking: The crystal structure 4WMZ of yeast Saccharomyces cerevisiae 

CYP51 protein contains fluconazole in its active site. The selected structure 5V5Z has a similar 
active site as that of 4WMZ; however, it contains itraconazole instead of fluconazole. The 
structures containing protoporphyrin IX with developed mutations were used in the docking 
study. Azole binding site of 5V5Z was used as a grid center for docking fluconazole with 
reference to 4WMZ. Water molecules were retained around 5Å near the hetero group due to 
their key role in Erg11p-fluconazole interactions [18]. Molecular docking was performed for 
fluconazole against all the Erg11p mutant structures generated and Erg11p_WT as well using 
extra precision (XP) docking method provided in the Glide (Grid-based Ligand Docking with 
Energetics) tool. Options were set for generating a maximum of 5000 poses per ligand for the 
initial phase of docking with a scoring window of 100.00 kcal/mol. This retains energetically 
favorable top 800 poses per ligand which were subjected to energy minimization and scoring. 
The docking used here is a flexible ligand sampling method with settings for sample nitrogen 
inversions and conformations that penalize nonplanar amides. The ligand conformations were 
evaluated using ChemScore function for energy-minimized poses that ranked the ligand poses 
by establishing a composite Emodel score where it rejects poses with Coulomb-vdW energy 
greater than 0.0 kcal/mol. Only distinct conformations are retained by using RMSD of less than 
0.5 Å and maximum atoms displacement is less than 1.3 Å with strain energy corrections of 
4.00 kcal/mol and 0.25 scaling factor for excess strain energy (Glide, Schrödinger, LLC, New 
York, NY, 2017-1). The consistency of ligand poses was verified by superposition of the top 
eight poses and calculating the RMSD values concerning the first pose. Images for docking 
were done using the Maestro interface (version 11.1.011) [25-27]. 

 
Molecular dynamics simulations: Molecular dynamics simulations were carried out using 

an explicit TIP4P water model to perform high-speed extensive simulation on biological 
systems using the Desmond package. Erg11p is a membrane protein, therefore, membrane 
placement was done using positions retrieved from the PDB of transmembrane proteins. The 
membrane setup using a POPC membrane model was built with the system building panel by 
assigning the periodic boundary condition of orthorhombic box size with a distance of 10 Å unit 
buffer. The system charge was balanced by adding sodium or chloride ions to neutralize the 
system and subsequently, apo-proteins and protein-ligand complexes were fixed appropriately 
in the solvated system. Then it was allowed to relax before simulation with a short minimization 
by default setting using OPLS_2005 force-field present in the Desmond suite. Further explicit 
MDS was carried out using the NPT ensemble at 300 K temperature and 1 atmospheric pressure 
using Nose-Hoover thermostat and Martyna-Tobias-Klein barostat scaling controls for a 
specified time of 50ns. Erg11p–fluconazole interaction percentage and fractions at the binding 
cavity were analyzed throughout the 50ns time. Visualization was done using the Maestro 
interface (version 11.0.014). Images for MD simulations were generated using simulation 
interaction diagram, event analysis and simulation quality analysis panel in the Desmond suite 
(Desmond, D. E. Shaw Research, New York, NY, 2016-4) [28-31]. 
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Molecular mechanics energies with generalized born surface area (MM-GBSA): 
Binding free energy for Erg11p–fluconazole docked complexes were calculated using the Prime 
MM-GBSA tool in the Schrödinger suite which uses a novel energy generation model VSGB 
2.0 (variable-dielectric surface generalized born model) for calculating the binding free energy 
(Prime, Schrödinger, LLC, New York, NY, 2017-1) [32, 33]. 
The equation to calculate binding free energy: ΔG (binding) = ΔG (complex) - 
(ΔG (free receptor) - ΔG (free ligand)) 

Where ΔG (binding) - binding free energy, ΔG (complex) - free energy of protein-ligand 
complex, ΔG (free receptor) - free energy of protein, ΔG (free ligand) - free energy of ligand.  

 
 

RESULTS 
 

Sequence alignment of 5FSA, 5TZ1 and 5V5Z with Erg11 protein sequence revealed that 
all the three structures obtained from the PDB lacked few residues due to crystallization error. 
5FSA and 5TZ1 were similar to each other and lacked first 44 residues at N-terminus and had 
six mutations compared to wild type sequence. However, 5V5Z lacked the first 24 residues at 
N-terminus, the last 4 residues at C-terminus and 12 residues in the middle of the structure. N-
terminal segments with missing residues are unusually long and cannot be filled. On the other 
hand, only 4 C-terminal residues are missing in 5V5Z and it has been considered as negligible. 
Internal missing residues in 5V5Z were filled by the “Prime” tool (an accurate protein structure 
prediction tool) at Schrödinger suite. The sequence present in 5V5Z is found to be more similar 
to wild type Erg11p than that of 5FSA and 5TZ1. Molecular dynamics simulations were 
performed for 50ns (50000ps) to assess the quality of crystal structures and revealed that 
internal energy was stable for all the three structures. However, the RMSD value of 5V5Z was 
found to be more stable whereas RMSF value for 5V5Z showed the least amino acid 
fluctuations compared to 5FSA and 5TZ1 (Fig. 2). 

Schematic of eight wild type residue locations in the Erg11p crystal structure and its 
respective residue mutations are shown in Figure 3A. Individual mutations developed using the 
selected Erg11p crystal structure (5V5Z) containing heme is shown in Supplement Figure 1. 

The RMSD and RMSF analyses for wild type apo-protein, suspected mutations 
(Erg11p_THR285ALA_apo, Erg11p_VAL321LEU_apo, Erg11p_SER457PRO_apo) and 
verified mutation Erg11p_TYR132HIS_apo are shown in Figure 3B-C. 

Apo-protein analysis revealed that RMSD values of suspected mutations were similar to 
that of wild type Erg11p and lesser than that of Erg11p_TYR132HIS_apo. However, there is no 
much variation in the RMSF values among the mutations that were analyzed. 

The developed Erg11p mutant structures along with wild type Erg11p were subjected to 
molecular docking against antifungal drug fluconazole. The superimposition of the top eight 
fluconazole poses and RMSD calculations concerning the first frame showed that fluconazole 
had a stable pose with less deviation. This confirmed the consistency of the docking pose 
(Supplement Fig. 2 and Supplement Table 1). Thereafter, the ranking was done based on non-
bonded interaction, Glide Emodel score and Gibbs binding free energy (Fig. 4 and Table 2). The 
Erg11p-fluconazole docking interaction results for (A) Erg11p_WT (B) Erg11p_TYR132HIS 
(C) Erg11p_TYR447HIS (D) Erg11p_THR285ALA (E) Erg11p_LEU321PHE and (F) 
Erg11p_SER457PRO are shown in Figure 4. All other Erg11p mutant-fluconazole interactions 
are shown in supplement Figure 3. 

Glide Emodel score for the best pose selection showed a greater binding affinity for 
Erg11p_WT compared to other mutants. Erg11p_WT showed the least value of -65.436 
kcal/mol and the verified mutation Erg11p_TYR132HIS showed a higher value of -58.676 
kcal/mol. MM-GBSA binding free energy analysis also showed the least value for Erg11p_WT 
compared to other mutants except for Erg11p_THR285ALA. The binding free energy value for 
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Erg11_WT was -54.33 kcal/mol (the lowest value) whereas -35.04 kcal/mol for the mutant 
Erg11p_TYR447HIS is the highest.  

 

 
Figure 2: Molecular dynamics simulations analysis (50ns or 50000ps) for all the Erg11p crystal structures  (A)  
RMSD plot, and (B) RMSF plot (Colour representation: Blue-5FSA, Red- 5TZ1 and Green-5V5Z) 

 

 
Figure 3: (A) Schematic of selected amino acid locations that have been mutated to TYR132HIS, THE285ALA, 
LEU321PHE, SER405PHE, TYR447HIS, SER457PRO, GLY464SER and ARG467LYS (verified fluconazole-
resistant mutations – blue spheres; suspected mutations – pink spheres; heme – grey spheres).  Apo-protein mutation 
analysis (B) RMSD plot, (C) RMSF plot (colour representation: green–Erg11p_WT_apo, red--
Erg11p_TYR132HIS_apo, blue-Erg11p_THR285ALA_apo, yellow–Erg11p_LEU321PHE_apo and pink–
Erg11p_SER457PRO_apo). 
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Figure 4:  Two dimensional interaction pattern of Erg11p-fluconazole docked complexes (A) Erg11p_WT 
(B) Erg11p_TYR132HIS (C) Erg11p_TYR447HIS (D) Erg11p_THR285ALA (E) Erg11p_LEU321PHE 
(F) Erg11p_SER457PRO (fluconazole resides in the middle, surrounded by the residues. Residues & 
interaction types: light green spheres – hydrophobic; light blue spheres – polar; grey spheres – heme; white 
spheres – glycine; purple arrows – backbone hydrogen bonds; dotted purple arrows – side chain hydrogen 
bonds; green lines – Pi-pi stacking; red lines – Pi-pi cation; black lines – metal coordination). 
 
Table 2: Predicted glide emodel score and MM-GBSA score for the fluconazole docked with Erg11p 
wild type and mutants 
S.No 
 

Erg11p wild type and mutants docked  
with fluconazole 

Glide emodel Score 
(kcal/mol) 

MM-GBSA score  
(kcal/mol) 

1 Erg11p_TYR447HIS -58.756 -35.04 
2 Erg11p_SER457PRO -62.214 -36.12 
3 Erg11p_ARG467LYS -59.504 -37.39 
4 Erg11p_SER405PHE -60.823 -40.23 
5 Erg11p_LEU321PHE -60.177 -43.11 
6 Erg11p_GLY464SER -61.343 -43.36 
7 Erg11p_TYR132HIS -58.676 -51.88 
8 Erg11p_WT -65.436 -54.33 
9 Erg11p_THE285ALA -62.650 -60.78 

 
Docking and MM-GBSA results suggested that Erg11_LEU321PHE and 

Erg11p_SER457PRO might involve in fluconazole resistance. Therefore, Erg11p_SER457PRO-
fluconazole and Erg11_LEU321PHE-fluconazole docked complexes were subjected to explicit 
molecular dynamics simulation for an extended 50ns. Similar analyses were done for wild type 
Erg11p and a verified mutation Erg11p_TYR447HIS that gave the least binding free energy and 
reduced interactions with fluconazole. After the molecular dynamics simulations Erg11p–
fluconazole interactions were analyzed. 

After 50ns molecular dynamics simulations, it has been found that wild type Erg11p-
fluconazole interactions had the highest number of contacts (TYR_118, PHE_126, TYR_132, 
GLY_307, LEU_376, SER_378, CYS_470, MET_508 & HEME) and higher percentage of 
interactions as well. However, the verified mutation Erg11p_TYR447HIS showed reduced 
residue contacts (TYR_118, PHE_126, ILE_131, LEU_376, CYS_470 & HEME) and lower 
percentage of interactions. On the other hand, suspected mutation Erg11p_LEU321PHE-
fluconazole interaction had shown contacts with TYR_118, PHE_126, TYR_132, ILE_131, 
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THR_311, ILE_304, LEU_376, CYS_470 & HEME whereas suspected mutation 
Erg11p_SER457PRO-fluconazole interaction had contacts with TYR_118, PHE_126, 
TYR_132, GLY_307, GLY_308, HIS_310, HIS_311, LEU_376, MET_508, VAL_509 & 
HEME. This showed that the number of residue contacts of fluconazole with wild type and 
suspected mutations is more or less the same but the percentage of interaction was less. 
Moreover, for suspected mutations, fluconazole had interacted with few different residues than 
that of wild type Erg11p (Fig. 5). 

 

 
Figure 5: Erg11p-fluconazole interaction pattern after the MDS and the percentage of interaction (>10%) 
(A) Erg11p_WT, (B) Erg11p_TYR447HIS, (C) Erg11p_LEU321PHE, (D) Erg11p_SER457PRO 
(fluconazole resides in the middle, surrounded by the residues. Residues & interaction types: green sphere 
– hydrophobic; grey sphere – water; light blue – polar; dark blue – heme; light gold – glycine; purple 
arrows – backbone hydrogen bonds; dotted purple arrows – side chain hydrogen bonds; green lines – Pi-
pi stacking; black lines – metal coordination).  Histogram for the interaction fraction of residues that 
stabilize Erg11p-fluconazole docked complexes (E) Erg11p_WT (F) Erg11p_TYR447HIS (G) 
Erg11p_LEU321PHE (H) Erg11p_SER457PRO (interaction types: green bars – hydrogen bonds; grey 
bars – hydrophobic interactions; pink bars – metal coordination; dark blue bars – water bridges). 

http://mbrc.shirazu.ac.ir/


 
 
 
 

Prakash et al., / Mol Biol Res Commun 2020;9(4):155-167    DOI: 10.22099/mbrc.2020.36298.1476      MBRC 

http://mbrc.shirazu.ac.ir                                                                163                                                               
  

The histogram for interaction of fluconazole with specific residues showed that the fraction 
of participating residues is ≥ 0.4 for Erg11p_WT (TYR_118, PHE_126, TYR_132, SER_378, 
CYS_470, MET_508), Erg11p_TYR447HIS (TYR_118, ILE_131, CYS_470), 
Erg11p_LEU321PHE (TYR_118, ILE_131, TYR_132, THR_311) and Erg11p_SER457PRO 
(TYR_118, LEU_376, MET_508). There are at least five different mode of interactions through 
which Erg11p and fluconazole complexes are stabilized. These are for Erg11p_WT( 
hydrophobic interaction-TYR_118, PHE_126, TYR_132, MET_508; water bridges–TYR_118, 
TYR_132, SER_378, MET_508; hydrogen bond–TYR_132; Pi-pi stacking–TYR_118, 
TYR_132; metal coordination–CYS_470, HEME);  Erg11p_TYR447HIS  (hydrophobic 
interaction - TYR_118; pi stacking–PHE_126; metal coordination–CYS_470, HEME); 
Erg11p_LEU321PHE (hydrophobic interaction-TYR_118, ILE_131, TYR_132; water bridges-
TYR_118, TYR_132; hydrogen bond–TYR_132, THR_311; Pi-pi stacking–TYR_118); 
Erg11p_SER457PRO (hydrophobic interaction-TYR_118, LEU_376, MET_508; water bridges 
– MET_508; Pi-pi stacking – TYR_118) (Fig. 5E-H).  

MDS data of 50ns after docking were used to calculate MM-GBSA binding free energy. 
Subsequently, it was used to comprehend the structural decomposition of Erg11p-fluconazole 
complexes such as Erg11p_WT, Erg11p_TYR447HIS, Erg11p_LEU321PHE and 
Erg11p_SER457PRO (Fig. 6 and Supplement Table 2). 

 

 
 
Figure 6: MM-GBSA binding free energy values throughout the 50ns MDS for Erg11-fluconazole 
docked complexes (colour representation: green - Erg11p_WILD_TYPE; yellow - Erg11p_TYR447HIS; 
blue - Erg11p_LEU321PHE; red - Erg11p_SER457PRO). 

 
The MM-GBSA binding free energy values calculated throughout 50ns MDS produced a 

wide range of values. Erg11p_WT showed the least binding free energy value of -50.886 
kcal/mol and the highest value of -22.648 kcal/mol. On the other hand, mutants showed lower 
and higher values of -38.171 kcal/mol and -3.486 kcal/mol for Erg11p_TYR447HIS, -40.853 
and -4.1796 for Erg11p_LEU321PHE and -26.785 kcal/mol and 1.208 kcal/mol for 
Erg11p_SER457PRO. 

 
 

DISCUSSION 
 
In-silico techniques have been extremely useful in identifying the crucial mutations that 

may involve in drug resistance. In this study, we chose three suspected mutations in Erg11 
protein that have been reported in fluconazole-resistant clinical isolates of C. albicans. The first 
and foremost step for the in-silico study is to select the best crystal structure. The appropriate 
template selection was done by aligning all the three available crystal structure sequences of C. 
albicans with wild type sequence of Erg11p (Fig. 2A).  MDS analysis for 50ns (50000ps) 
revealed that the structure 5V5Z had stable internal energy, consistent RMSD value and least 
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RMSF value (Fig. 2B-C). All these results showed that 5V5Z is the best template out of the 
three Erg11p crystal structures 5FSA, 5TZ1 and 5V5Z [13].  

The selected structure was used to depict the residues and their respective mutations (Fig. 
3A and Table 1) [9-12]. The in-silico study was started with Erg11 apo-protein (without co-
crystal structures) to know the structural changes or deformation due to the suspected mutations.  
In this study, all three suspected mutations as well as wild type Erg11p (negative control) and a 
verified mutation Erg11p_TYR132HIS (positive control) were developed using apo-protein 
[23]. Developed apo-proteins were subjected to 25ns MDS to have insights into the 
conformational stability of the proteins due to mutations. MDS of apo-proteins for the suspected 
mutations showed little variation in the RMSD value compared to wild type but verified 
mutation Erg11p_TYR132HIS_apo showed a higher value as expected (Fig. 3B). There is no 
significant change in the RMSF value for any of the mutations compared to wild type (Fig. 3C). 
This indicates that there is only a little change in the tertiary structure of the protein due to the 
suspected mutations. Therefore, resistance caused by the suspected mutations could occur due to 
the inefficient binding of fluconazole to the enzyme or change in the conformation at the 
binding cavity.  

Binding study of fluconazole was performed by extra precision (an accurate flexible 
docking method that avoids false-positive results) to assess the binding of fluconazole with 
mutated Erg11 proteins [26]. Superimposition of the top eight fluconazole poses for all the 
docked complexes clearly showed that the docking pose of fluconazole was consistent with 
lesser deviations (Supplement Fig. 2 and Supplement Table 1). Docking was followed by MM-
GBSA analysis to determine the stability of the binding efficiency. The docking and MM-
GBSA results showed that mutated Erg11p had reduced non-bonded interactions and higher 
binding free energy compared to wild type Erg11p. The interaction of fluconazole with 
suspected mutation Erg11p_THR285ALA is found to be similar to wild type Erg11p and 
showed the least binding free energy value. However, Erg11p_LEU321PHE had lesser 
interaction with fluconazole and higher binding free energy than that of Erg11p_THR285ALA 
but lesser than Erg11p_SER457PRO. The mutation Erg11p_SER457PRO showed reduced non-
bonded interaction and higher binding free energy value with fluconazole compared to all other 
suspected mutations and the second highest among all the verified mutations. In agreement with 
the experimental results, all the verified mutations showed reduced non-bonded interactions and 
higher binding free energy values than that of wild type Erg11p. Among the verified mutations, 
Erg11p_TYR447HIS showed the highest binding free energy and reduced non-bonded 
interactions (Fig. 4 & Table 2). This finding revealed that two suspected mutations 
Erg11p_LEU321PHE and Erg11p_SER457PRO could be involved in fluconazole resistance.  

Previous studies reported that water-mediated interactions of Erg11p residues TYR_126, 
TYR_140 and SER_382 of S. cerevisiae play an important role in fluconazole resistance [18]. In 
C. albicans Erg11p, TYR_118, TYR_132 and SER_378 are the corresponding positions of 
those amino acids. To analyze the mode of Erg11p-fluconazole interactions and stability, 50ns 
MDS was performed for two suspected mutations (Erg11p_LEU321PHE and 
Erg11p_SER457PRO) complexed with fluconazole whereas verified mutation 
Erg11p_TYR447HIS and wild type Erg11p serve as positive and negative controls, 
respectively. 

MDS results revealed that Erg11p of C. albicans had similar water-mediated interactions 
with fluconazole involving TYR_132 and SER_378 residues. Furthermore, TYR_118 had 
shown higher interaction with fluconazole, however, it lacks hydrogen or water-mediated 
hydrogen bonds. This implies that TYR_132 and SER_378 might have a critical role in drug 
resistance of C. albicans as reported in S. cerevisiae [18]. TYR_118 could also play a critical 
role in the interaction with fluconazole. Interestingly, these water-mediated interactions are 
completely lacking in verified mutation Erg11p_TYR447HIS. However, Erg11p_LEU321PHE 
is the only mutation that showed strong water-mediated interaction for TYR_118, a non-water 
mediated hydrogen bond for TYR_132 and weak water-mediated hydrogen bonds for TYR_132 
and SER_378 residues. However, Erg11p_SER457PRO showed a very little water-mediated 
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hydrogen bond interaction for TYR_132. Wild type Erg11p and verified mutation 
Erg11p_TYR447HIS showed strong interaction with heme. However, suspected mutation 
Erg11p_LEU321PHE showed weak heme interaction whereas Erg11p_SER457PRO mutant 
completely lacked heme interaction (Fig. 5A-H). This suggests that Erg11p_LEU321PHE 
mutation could have reduced binding efficiency with fluconazole due to weak non-bonded and 
heme interactions. However, Erg11p_SER457PRO mutation lacked crucial water-mediated and 
heme interactions that may lead to the least binding efficiency with fluconazole.  

MM-GBSA analysis was performed followed by MDS to understand the binding efficiency 
of fluconazole to Erg11p. These analyses showed the least binding free energy for wild type 
Erg11p throughout the simulation and suspected mutation Erg11p_LEU321PHE comes next to 
wild type. However, Erg11p_SER457PRO showed higher binding free energy similar to that of 
a verified mutation Erg11p_TYR447HIS (Fig.6, Supplement Table 2). These results revealed 
that the interaction pattern of fluconazole with Erg11p_THR285ALA is closely matching with 
wild type Erg11p. The binding free energy was also lesser than the wild type Erg11p. This 
indicates that Erg11p_THR285ALA mutation may not have any significant role in fluconazole 
resistance. Erg11p_LEU321PHE-fluconazole docking showed fewer non-bonded interactions 
with fluconazole and increased binding free energy compared to wild type Erg11p. On the other 
hand, MDS showed a reduced water-mediated hydrogen bond and heme interactions for this 
mutant. However, MM-GBSA analysis of post-MDS produced lesser binding free energy for 
Erg11p_LEU321PHE mutation compared to suspected mutation Erg11p_SER457PRO and 
verified mutation Erg11p_TYR447HIS. These analyses indicate that Erg11p_LEU321PHE 
mutation might have a moderate role in fluconazole resistance as reported by Carvalho et al., 
2013 [9]. However, Erg11p_SER457PRO is the only suspected mutation that showed very less 
non-bonded interactions and higher binding free energy value compared to wild type Erg11p. 
Moreover, it lacked the important heme interaction that involves in the Erg11p-fluconazole 
binding. MM-GBSA analyses of post-MDS produced the highest binding free energy for 
Erg11p_SER457PRO mutation. This confirms that this mutation caused a significant reduction 
in the binding efficiency of fluconazole to Erg11 protein. 

Our study strongly suggests that Erg11p_SER457PRO mutation may play an active role in 
fluconazole resistance. However, suspected mutation Erg11p_LEU321PHE could have a 
moderate role whereas Erg11p_THR285ALA may not have any significant role in fluconazole 
resistance. Further validation using the experimental methods will confirm the involvement of 
these mutations in fluconazole resistance. Moreover, this study will help in exploring other 
suspected drug-resistant mutations of Erg11 protein. This could pave the way for developing 
new versions of antifungals to overcome the growing drug resistance in fungal pathogen C. 
albicans.    
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