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ABSTRACT 
 
Lung cancer is the most common type of tumor worldwide. Non-small-cell lung carcinoma 

(NSCLC) is considered any epithelial cell-related lung cancer, which includes more than 85% of 
all lung cancer cases. NSCLC is less responsive to chemotherapy than SCLC. Therefore, the 
need for other treatments has become more pronounced and immunotherapy has gained 
increasing attention as a promising therapy in recent years. The current study aimed to design a 
multi-epitope peptide vaccine targeting main cancer/testis antigens of SP17, AKAP4, and 
PTTG1, which have a major function in tumor cell proliferation invasion. The protein vaccine 
was constructed using the rigorous immunoinformatics analysis and investigation of several 
immune system parameters, considering B cell epitopes and CD4 and CD8 induced epitopes as 
the most important cells to respond to cancer cells. Inverse translation and optimization of 
codons were performed to have the designed protein's cloning as well as expression potential in 
E.coli. Physicochemical, antigenic, and allergenic features were assessed to confirm the safety 
and immunogenicity of the vaccine. The secondary and tertiary structures were predicted. 
Finally, intrinsic disorder and 3D model refinement and validation were performed to eliminate 
structural problems. The designed construct had a stable structure that could be an antigen and 
stimulate the immune system and not be an allergen. The built model 3D structure was valid and 
stable. Further investigations are needed to approve the safety and immunogenic property of this 
new vaccine for NSCLC before it can be used in patients. 
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INTRODUCTION 
 
Cancer deaths from lung cancer have increased in recent years, but its prevalence varies 

considerably around the world [1]. In 2019, about 228,150 lung cancer new cases and 142,670 
deaths related to lung cancer-associated death are estimated for the United States alone. 
Approximately 85% of lung cancer patients are attributed to non-small cell lung cancer 
(NSCLC), and has a 5-year overall survival rate of 23%, compared to only 6% for small cell 
lung cancer [2]. It is important to note that despite efforts and advancements in cancer diagnosis 
and treatment, many patients with NSCLC succumb to their disease. This life-threatening 
disease necessitates the development of more effective treatment options [3, 4]. Immunotherapy 
has been recently suggested as a promising treatment option for cancers such as NSCLC. 
Recently, the use of tumor-specific antigens and other effective protein sequences to stimulate 
the immune system and produce protective immune responses for those susceptible to or 
involved in cancer has been highly regarded [5-11]. Current evidence demonstrated that cancer 
testis antigens (CTA) such as pituitary tumor transforming gene 1 (PTTG1), A-kinase anchor 
protein 4 (AKAP4), and sperm protein 17 (SP17) are potential immunotherapeutic targets in 
NSCLC [12, 13]. The importance of CTAs, a class of tumor-associated antigens, is due to their 
high expression in cancerous tissues and their rarity in normal ones [14]. 

For vaccine design and development, multiple-epitope subunit vaccines are favored in 
comparison with single epitope ones as (I) they contain major histocompatibility complex 
(MHC)-restricted epitopes which could be identified by T cell receptors of diverse subsets of T-
cells; (II) they possess B-cell, T helper and cytotoxic T lymphocytes epitopes which can trigger 
robust cellular and humoral immunity concurrently; (III) they comprise several epitopes of 
variant virus or tumor antigens which can extend to a wide range of targeted viruses  or tumors, 
(IV) they present several components with adjuvant property which can boost the strength and 
duration of immune responses; and (V) they decrease undesirable components that can induce 
damaging immune response or adverse side effects. Therefore, such well-designed multiple-
epitope subunit vaccines with several benefits can be potent therapeutic and prophylactic agents 
against cancers [15]. 

Identification of immunogenic CTA peptides and their application in multi-epitope vaccines 
have shown promising antitumor properties. Functional confirmation tests of these vaccines can 
be verified first in the bioinformatics phase and later in the in vitro and in vivo stages. To date, 
no comprehensive studies have been performed on the SP17, AKAP4, and PTTG1 antigens to 
identify their best epitopes [13, 16].  

In addition to the employed antigens, various strategies can be utilized to increase the 
immunogenicity of the designed vaccines [17-19]. One of these strategies is the addition of 
helper T cell-stimulating epitopes as a pivotal cell in controlling the immune system network. 
These epitopes are found in some bacterial toxins such as TTFrC (tetanus toxin fragment c), 
cholera toxin, and LT (heat-labile enterotoxin) and help to overcome the strategy of cancer cells 
[20]. The ability of the immune system to specifically inhibit cancer cells makes it the most 
potent weapon for long-term tumor control. Multi-epitope vaccines have many advantages, 
including high specificity, stability under different conditions according to predetermined 
studies, high immunogenicity along with minimal side effects (due to controlled immune 
stimulation), and their cost-effective production [21]. 

Given the advances in bioinformatics in the last decade, it is possible to identify the most 
immunogenic epitopes using algorithms in biological databanks. These investigations appear to 
be necessary before experimental studies [20]. Keeping in view these data, the present study 
aimed to devise a multi-epitope subunit vaccine targeting SP17, AKAP4, and PTTG1 in 
NSCLC. In this regard, we have also designed a protein construct and determined its 
physicochemical and immunogenic properties using online tools. Several immune-related 
indexes evaluated its recombinant production capacity. 
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MATERIALS AND METHODS 
 
Collection of data and protein sequences: The amino acid sequence of SP17 (Accession 

no. Q15506), AKAP4 (Accession no. Q5JQC9), and PTTG1 (Accession no. O95997) were 
retrieved and saved in FASTA format from the National Center for Biotechnology Information 
(NCBI) and the Universal Protein Resource (UniProt) at http://www.uniprot.org. Multiple 
sequence alignments (MSAs) were carried out using sequences stored in the NCBI database to 
determine the sequence similarity (http://www.ncbi.nlm.nih/Blast). 

 
Immuno-informatics analyses: Epitope prediction major histocompatibility complexes I 

and II: After the first encounter of antigens with antigen-presenting cells (APCs), MHC 
molecules present epitopes of antigens to the T cells. Therefore, antigen evaluation in terms of 
MHC identification is a crucial early stage in vaccine design. A variety of analytical algorithms 
can predict MHC class I-binding peptide sequences. The NHLAPred, a neural network-assisted 
prediction server for MHC class-I binding peptide, was firstly used (https://webs.iiitd.edu.in/ 
tmp/nhlapred01.html). Immune Epitope Database Analysis Resource (IEDB) online server [22]. 
was used to provide a quantitative matrix for the broad range alleles of the MHC Class-I to 
forecast the best epitopes. RANKPEP online software was also utilized to predict epitopes of 
MHC class II for all three chosen proteins. Epitopes which were bound to the maximum number 
of MHC alleles were appointed, especially those alleles involved in the detection or protection 
of NSCLC. 
 

Cytotoxic T lymphocyte epitopes prediction: An online server called CTLpred was 
chosen to forecast the epitopes which could stimulate T cells in the preparation of a direct 
method (http://crdd.osdd.net/raghava/ctlpred/). This online server makes this prediction using 
information and models of T cell-stimulating epitopes (regardless of MHC molecule 
presentation). This method depends on learning machine algorithms such as artificial neural 
network (ANN) and support vector machine (SVM) [14]. 
 

B-cell epitopes Prediction: B-cell receptors can detect linear as well as conformational 
epitopes of antigens. The IEDB server (http://tools.iedb.org/bcell/) was used for the prediction 
of linear epitopes of B cell. The Discotope server (http://www.cbs.dtu.dk/services/DiscoTope/) 
was applied to identify Continued epitopes of B cell on 3D protein structures. Epitope surface 
accessibility and epitope affinity are important factors in selecting the best conformational 
epitopes [23, 24]. 

 
Chimeric gene design and optimization: Appropriate sequences of SP17, AKAP4, and 

PTTG1 antigens were selected to determine the chimeric structure to stimulate T and B cells. In 
addition, TTFrC was used as an epitope to produce helper T cells and heparin-binding 
hemagglutinin as an adjuvant. The selected peptide fragments were ligated to each other by 
suitable EAAAK, GPGPG, and HEYGAEALERAG linkers. Different servers evaluated the 
performance characteristics of the compiled structure. It is necessary to investigate its 
compatibility with E.coli codons using inverse translation and optimization of codon before 
protein construction to clone and express the designed protein in the E. coli host. For this 
purpose, JCAT software (http://www.jcat.de) was used before and after refinement. The 
Vaxigen server also predicted the immunogenicity of the chimeric protein and its subunits. 

 
Vaccine features: Evaluating physicochemical parameters and assessment of 

allergenicity: Theoretical pI (isoelectric point), Grand averages of hydropathicity (GRAVY), 
molecular weight, , aliphatic index, half-life, instability index, and amino acid composition were 
assessed using the ProtParam server23 (http://web.expasy.org/protparam) to determine the 
physicochemical features. It is necessary to evaluate the status of allergenicity and antigenicity. 
The construct can make the immune system hypersensitive or insensitive. For this purpose, 
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AlgPred web server (http://www.imtech.res.in/raghava/algpred) was utilized to test these 
indexes based on six different methods with an accuracy of 85% and a threshold of -0.4.  

 
 Prediction of secondary and tertiary structure of multi-epitope vaccine: It was 

necessary to use PDBsum and PSIPRED for secondary structure prediction and further 
definition of the structural characteristics of the designed construct. PDBsum can be used for the 
identification of the molecule(s) which are responsible for constructing the structures of ligands, 
DNA, proteins, and metal ions [25]. In addition, it shows the ligand-protein and individual chain 
interactions as well as protein secondary structure. Reported data also contains complete 
information about structural motifs such as channels, pores, and apertures. The tertiary structure 
of the multi-epitope subunit vaccine was forecasted using I-TASSER15 and Phyre2 online 
servers. These tools provide hierarchical methods for predicting protein structure and function 
[26, 27].  

 
Validation and Refinement of the 3D modeled structure: The GalaxyRefine online 

server (http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) was applied to enhance the 
quality of the template-based constructed model and create a more efficient form. The process 
uses both mild and aggressive relaxation methods to modify the protein.  Operation strategy of 
the server for prediction of the vaccine 3D structure is based on the similarity status between the 
available template structure option and the target protein. Further structural relaxation and 
molecular dynamics simulation were shown by GalaxyRefine. Before and after the refinement 
process, a Ramachandran plot was made to verify the design using an online webserver called 
RAMPAGE (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php). The PROSA service was 
used to perform additional protein structure validation. This system can be used to calculate the 
proposed structure's overall quality score. Notably, if the score for the sequences falls outside 
the specified range, the structure is likely to contain errors. 

 
Predicting inherent protein disorder: Given the fact that the construct is not native, there 

may be some defects. So, DisEMBL 1.5 (http://dis.embl.de/) and IUPred (http://iupred.enzim. 
hu/pred.php) servers were used to predict areas with defective structure and inherent protein 
disorders. 

 
 

RESULTS  
 
The total number of amino acids in the final protein sequence was 364. As the construct's 

first domain, HBHA was chosen as an adjuvant in the N terminus. As the second domain, two 
regions from TTFrC were used as the epitopes of CD4+ helper (See appendix Table 1). The 
third domain was considered based on CTL epitopes selected from SP17, AKAP4, and PTTG1 
protein sequences. Ultimately, valuable linkers were applied to link the favorite peptide 
sequences (See appendix Fig. 1). 

The high-scored peptide regions over mouse-related MHC-I prevalent alleles (MHC-2Db, 
MHC-2Dd, MHC-2Kd) were selected from IEDB and NHLAPred online servers for each of 
three NSCLC-related antigens (sp17, AKAP4, and PTTG1) (Tables 1, 2, and 3). Finally, two 
areas from SP17 (between 29–43 and 118-145 amino acid residues), three areas from AKAP4 
(between 18-27, 206-215, and 213-222 amino acid residues) and three regions from 
PTTG1(between 40-49, 27-36, and 159-168 amino acid residues) were selected for analysis.  

 
Table 1: TTFrC MHC-II binding peptides determined by RANKPEP 

Epitope sequence Start position End position 
NDIISDISGFNSSVITYPDAQLVPGINGKAIHLVNNE 40 66 
IEYNDMFNNFTVSFWLRVPKVSASLEQYGT 78 108 
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Table 2: SP17 MHCI and II predicted epitopes 
Server HLA Class-I Start End Sequence From CD81 Best ranked epitope 

                                               Low percentile rank = good binders Percentile rank 
IEDB H-2-Db 34 43 NIPAFAAAYF 1.4 

H-2-Dd 38 47 FAAAYFESLL 2.75 
H-2-Kb 37 46 AFAAAYFESL 2.85 

                             high score= good binders SCORE 
NHLAPred H2_Db 34 43 NIPAFAAAYF 20.364 

H2_Dd 30 39 EQPDNIPAF 18.510 
H2_Kb 39 48 AAAYFESLL 15.201 

 HLA Class- II high score= good binders Core reliability score 
IEDB  113 127 KEEVAAVKIQAAFRG 0.06 

 29 43 REQPDNIPAFAAAYF 1.15 
RANKPEP                                high score= good binders SCORE 

H-2-IAd 29 38 REQPDNIPA 11.704 
H-2-IAb 116 125 VAAVKIQAA 11.24 

 
 
Table 3: AKAP4 MHCI and II predicted epitopes 
Server HLA Class-I Start End Sequence From CD81 Best ranked epitope 
           Low percentile rank=good binders Percentile rank 
IEDB H-2-Db 159 168 YADQVNIDYL 0.16 

H-2-Dd 18 27 RSHRGVCKV 0.23 
H-2-Kb 218 227 SFYVNRLSSL 0.32 

                                     high score=good binders SCORE 
NHLAPred 
 

H2_Db 206 215 ISPDGECSI 22.365 
H2_Dd 213 222 SIDDLSFYV 20.369 
H2_Kb 22 31 KSQSLSYASL 18.325 

 HLA Class-II        high score=good binders Core reliability score 
IEDB H-2-IAd 221 235 VNRLSSLVIQMAHKE 0.68 

H-2-IAb 205 220 VISPDGECSIDDLSF 0.51 
RANKPEP                                     high score=good binders SCORE 
 H-2-IAd 205 214 VISPDGECS 6.678 

H-2-IAb 736 745 FRGTRCIHS 5.255 

 
 
The most important part of the immune system that needs to be stimulated in cancer vaccine 

production is cytotoxic T cells. Therefore, selecting the most accessible and stimulating epitopes 
that antigen-presenting molecules have previously confirmed is important. Accordingly, the 
CTLPred online server (http://crdd.osdd.net/raghava/ctlpred/) found that the best presentable 
epitopes on MHCs overlap with T cell epitopes on sp17, AKAP4, and PTTG1. These epitopes 
were mentioned above.   

CTLPred uses a direct method relying on the information and pattern of T-cell epitopes 
regardless of MHC responses, and through an artificial neural network [14] and support vector 
machine (SVM) to predict CTL epitopes.  

The appropriate amino acid regions for presentation by MHC-II were also selected by 
IMMUNE EPITOPES DATABASE (IEDB) and RANKPEP server, and the best epitopes 
presentable by these two vital molecules were chosen for identification by T cells. Various 
prediction methods used by the IEDB server, which results in choosing the best immunogenic 
molecules. The server employs the Consensus, Combining NN-align, SMM-align, and 
CombLib methods. If these methods fail to predict the appropriate epitopes, the alternative way 
NetMHCIIpan will be used. Given that the designed vaccine ultimately needs to be functionally 
evaluated in mouse models, the common mouse alleles H2-IAb and H2-IAd were selected 
(Table 4). 

BCPred software was applied to forecast the continuous B-cell epitopes. All 16-mers with 
BCPred cutoff score >0.9 in epitopes of B-cell were chosen (Table 5).  
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Table 4: PTTG1 MHCI and II predicted epitopes 
Server HLA Class-I Start End Sequence From CD81 Best ranked epitope 
           Low percentile rank=good binders Percentile rank 
IEDB H-2-Db 42 51 STPRFGKTFD 2.2 

H-2-Dd 170 179 PSPPWESNLL 1.15 
H-2-Kb 114 123 IEKFFPFNPL 1.3 

                              high score=good binders SCORE 
NHLAPred 
 

H2_Db 40 49 QVSTPRFGK 25.366 
H2_Dd 27 36 GSGPSIKAL 21.324 
H2_Kb 159 168 FQLGPPSPV 22.326 

 HLA Class-II  high score=good binders Core reliability score 
IEDB H-2-IAd 155 169 LEKLFQLGPPSPVKM 0.83 

H-2-IAb 46 60 FGKTFDAPPALPKAT 0.93 
RANKPEP                               high score=good binders SCORE 
 H-2-IAd 50 59 FDAPPALPK 11.84 

H-2-IAb 158 167 LFQLGPPSP 5.289 

 
 
Table 5: Predicted T cell epitopes using different servers 
Peptide rank Start position sequence Score(ANN/SVM) 
                                                          SP17 
1 35 IPAFAAAYF 0.97/0.92642045 
2 118 AVKIQAAFR 0.94/0.46358695 
3 30 EQPDNIPAF 0.58/0.72258157 
    
                                                          AKAP4 
1 18 RSHRGVCKV 0.98/0.98838417 
2 206 ISPDGECSI 0.80/0.91083083 
3 213 SIDDLSFYV 0.92/0.77818421 
    
                                                          PTTG1 
1 40 QVSTPRFGK 0.92/0.68594268 
2 27 GSGPSIKAL 0.97/0.4606087 
3 159 FQLGPPSPV 0.96/0.45444044 

 
The continuous B-cell epitopes used in this study were chosen based on a variety of factors 

such as antigenicity, hydrophilicity, polarity, accessibility, flexibility, and exposed surface area. 
Obtained results indicated that no epitope was found at the linker sites among distinct domains 
(amino acids 501 to 505). Predicting discontinuous B cell epitopes was accomplished by the 
Discotope server, which identified B cell epitope residues out of 364 residues (See appendix 
Table 2). 

The sequence of the multi-epitope vaccine begins with heparin-binding hemagglutinin 
adhesin, a critical virulence factor of mycobacterium tuberculosis, as an adjuvant in the N 
terminus. The protein is located on the bacterial cell surface, acts as a molecule adhering to non-
phagocytic cells, and has a function in the extrapulmonary spread of the bacterium. In the 
following, two regions from TTFrC were used to more stimulate the helper T lymphocyte 
responses. Epitopes chosen from SP17, AKAP4, and PTTG1 protein sequences were added as 
the central part of the vaccine against NSCLC to intensify CTL-related immunity reaction. 
Appropriate linkers are required to maintain the 3D functional structure of the selected 
sequences in the designed vaccine. The best of these GPGPG and EAAAK were used. 

As mentioned above, the final sequence of vaccine consists of 364 amino acids and three 
domains.  JCat prepares the inverse translation and optimization of codon. Codon adaptation 
index (CAI) was obtained 0.81 (See appendix Fig. 2). Increased expression level in the host 
required a CAI of more than 0.8. To put it another way, the gene sequence's CAI is 0.85, which 
means it's suitable for high-level expression in this particular host. 55.42 percent of the total GC 
content was reported; the optimal GC content range is considered to be between 30 and 70 
percent. Only one cis-acting negative element was found in the gene. 
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The calculated molecular weight and isoelectric point (pI) were found to be 39.517 and 4.87 
for the chimeric proteins. At 280 nm, the chimeric protein had an extinction coefficient of 
23505 M-1 cm-1. While the half-life in mammalian and yeast reticulocytes was estimated at 30 
hours, it was over 20 hours in E.coli and yeast. It has a stability index of 37.19 and is considered 
as a stable protein according to Expasy ProtParam. Aliphatic index and GRAVY of chimeric 
proteins were defined as 84.07 and -0.334, respectively. Allergenic proteins and IgE epitopes 
were predicted and mapped. However, based on amino acid composition, there were no IgE 
epitopes in the protein sequence, and the protein was found to be nonallergenic (See appendix 
Table 3). 

Online server predicting the secondary structure of the chimeric protein is given in Figure 1. 
It was discovered through the research that the protein's structural contents include alpha helix, 
a random coil, and extended strands. Furthermore, the chimeric proteins' predicted secondary 
structure included 62-64 % alpha-helix, 8.79 % extended strands, and 28.57 % random coil. The 
I-TASSER and Phyre2 online server programs were applied for the 3D structure of the chimeric 
protein. Three main domains were found to be linked by a linker in a protein discovered by the 
I-TASSER method (Fig. 2). For the I-TASSER-predicted models, the C-score was a -1.10. In 
most cases, the C-score is in the -5 range, and the higher the C-score value, the more confident 
the model. Also included in this model were the template modeling (TM) score and the root-
mean-square deviation (RMSD), both of which were 0.580.14 and 9.14.6, respectively. The 
Ramachandran plot was used to analyze the chimeric protein. According to the results, the vast 
majority of the amino acid residues of modeled structure were included into the plot's allowed 
and favored categories (Fig. 3). 

To refine the acquired tertiary structures, the GalaxyRefine program was used. 
Subsequently, the refined 3d structures were validated by ProSA-web server and Ramachandran 
Plot (Fig 3). Using the Ramachandran plot, protein validation of the 3D model indicated that 
276 (76.2%), 48 (13.3%), and 38 (10.5%) of residues were placed in the favor, allowed and 
outlier categories of initial model, respectively. In the Refinement model, 326 (90.1%), 26 
(7.2%), and 10 (2.8%) of residues were placed in the allowed, favored, and outlier categories, 
respectively (Fig. 4). 

 

 
Figure 1: Graphical results for secondary structure prediction of chimeric protein 
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Figure 2: Predicted structure of constructed protein using I-TASSER and Phyre2 software .The three-
dimensional structure showed a protein with three main domains linked together with appropriated linker. 

 

 
Figure 3: Validation of protein 3D model, before and after refinement by Ramachandran plot. (A) In 
initial model, 276 (76.2%), 48 (13.3%) and 38 (10.5%) of residues were located in favored, allowed and 
outlier regions, respectively. (B) In refined model, in refined model, 326 (90.1%), 26 (7.2%) and 10 
(2.8%) of residues were located in favored, allowed and outlier regions, respectively. 
 

 
Figure 4: Tertiary structure of modeled vaccine before refinement (Left). Superimposition of tertiary 
structure of modeled vaccine after refinement (Right). 
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As noted, the disordered areas were identified by DisEMBL online software. Amino acids 
2-12, 45-60, 320-342, and 355-361 were considered disordered areas, considering Loops/coils, 
hot-loops, and the remark-465 definition (Fig. 5).                     

 

 
Figure 5:  Intrinsically disorder regions. Amino acids in the input sequence were considered disordered 
when the black line is above the red line. 

 
 

DISCUSSION 
 
In recent years, immunotherapy has risen to prominence as a promising cancer treatment 

and prevention method. Cancer treatment relies heavily on the induction of antigen-specific 
immune responses and/or T-cell checkpoint modulation to enhance anti-tumor activity. [28]. 
Nowadays, bioinformatics changes biology and medicine and opens new horizons in designing 
novel molecules and processes in biomedicine fields [29-34]. 

Therefore, in the current study, we attempted to devise a multi-epitope-based vaccine via 
bioinformatics tools targeting the major tumor-associated antigens including SP17, AKAP4, and 
PTTG1, which have been implicated in in tumor proliferation and invasion. Since different 
alignments of amino acid sequences together can lead to different spatial protein structures, 
particular epitopes must be properly sequenced to produce a functional vaccine [20, 35].  

HBHA in the N terminus was chosen as a first domain and an adjuvant for the construct. 
Two regions of TTFrC were used as the epitopes of CD4+ helper in the second domain. The 
third domain was selected from SP17, AKAP4, and PTTG1 protein sequences as CTL epitopes. 
To connect favorite peptide sequences, rigid linkers were eventually used. The constructed 
proteins required an appropriate linker to bind different favorite epitopes. It is imperative that 
we effectively detach the domains of the desired chimeric protein using GPGPG, EAAAK, and 
HEYGAEALERAG cleavable linkers. The findings of bioinformatics and our successful use of 
chimeric gene's linkers have demonstrated their usefulness in the construction of functional 
structures [36].  

The selected linker can notably regulate the distance between epitopes and decrease the 
interference between the domains [37]. ProtParam software was used to analyze the 
physicochemical parameters of our chimeric sequence. The pI value (pI>7.75) indicated the 
protein's fundamental nature. At 280 nm, the constructed protein had a high extinction 
coefficient. Expasy ProtParam tool categorized the studied chimeric protein as stable based on 
its instability index (35.59). Cellular immunity, as the most important part of the immune 
system against viral and cancer cells, relies on the activity of CTL cells. Therefore, the strategy 
of designing anticancer vaccines should be based on selecting the best T cell-stimulating 
antigens and presentable epitopes by MHCs, and then investigating the defects and potentials of 
the selected sequences to serve as ideal antigens [38]. The CTLpred online database was applied 
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to identify potentially T-cell epitopes in chimeric proteins.  Epitopes that were antigenic and 
could potentially interact with human HLA alleles were chosen. The prediction of the 3D 
structure of studied chimeric protein was done by I-TASSER software from the beginning. 
Results showed that the ab initio I-TASSER software predicted the folds for our multivalent 
protein and provided a good resolution model. It is possible to determine how reliable and 
accurate a predicted model is by checking the RMSD and TM scores [39].  

According to the model, the accuracy is confirmed by the expected TM score of 0.580.14. 
ATM-score greater than 0.5 typically shows the accurate topology model. Also, the C- and Z-
scores indicate the level of confidence in the topology model. Finally, the Ramachandran 
diagram analysis revealed a protein with complete stability [40]. From an applied aspect, a 
functional and effective constructed cancer vaccine should involve cellular and humoral 
immunity to overcome the growth rate and metastasis of cancer cells by utilizing all immune 
system's capacity, especially in the lung, as a vital tissue [41]. 

The chimeric protein's B-cell epitopes were discovered in this study by using a variety of 
different indexes, including antigenicity, hydrophobicity, accessibility, flexibility, and 
secondary structure analysis, among others. There were acceptable results from the assessment 
of all continuous B-cell epitopes in this study. 

The initial function of B cells is related to the development of humoral immunity. In lung 
cancer, tumor-associated B cells affected by tumor antigen uptake differentiate into plasma 
cells, produce tumor-specific antibodies, and generate memory B-cells, which last in the 
involved host and lead to long-lasting responses against cancer antigens. There is a direct 
relationship between the severity of B cell response and the aggressiveness of cancer cells [42]. 
DiscoTope has proven that it is one of the most reliable software to recognize conformational B 
cell epitopes. Antibodies could easily bind to the protein's surface epitopes. In computational 
studies, another important step is the identification of discontinuous epitopes which are required 
for the interaction of antibody and antigen [43].   
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