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ABSTRACT 
 
Phospholipases, as important lipolytic enzymes, have diverse industrial applications. 

Regarding the stability of extremophilic archaea’s proteins in harsh conditions, analyses of 
unusual features of their proteins are significantly important for their utilization. This research 
was accomplished to in silico study of archaeal phospholipases’ properties and to develop a 
pioneering method for distinguishing these enzymes from other archaeal enzymes via machine 
learning algorithms and Chou’s pseudo-amino acid composition concept. The non-redundant 
sequences of archaeal phospholipases were collected. BioSeq-Analysis sever was used with 
Support Vector Machine (SVM), Random Forests (RF), Covariance Discrimination (CD), and 
Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) as powerful machine learnings 
algorithms. Also, different Chou’s pseudo-amino acid composition modes were performed and 
then, 5-fold cross-validation was applied to the sequences. Based on our results, the OET-KNN 
predictor, with 96% accuracy, yields the best performance in SC-PseAAC mode by 5-fold 
cross-validation. This predictor also achieved very high values of specificity (95%), sensitivity 
(96%), Matthews’s correlation coefficient (0.92), and accuracy (96%). The present investigation 
yielded a robust anticipatory model for the archaeal phospholipase prediction utilizing the tenets 
PseAAC and OET-KNN machine learning algorithm. 
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INTRODUCTION 
 
Relying on comparative genomics and rRNA-based phylogenetic trees, the archaea are 

introduced as the third domain of life following bacteria and eukarya [1, 2]. Archaea live in 
harsh environments including high temperature, high osmotic pressure, and extreme pH. As a 
result of tolerance to these excessive surroundings where other proteins would be degraded, the 
archaea proteins are highly valued in biotechnology for their stability and ability to function. 
Currently, the archaea domain is categorized into three main subgroups, at the phylum level: 
euryarchaeota, crenarchaeota, and thaumarchaeota [3]. Archaeal organisms have diverse 
distinguishing characteristics, including unique cell wall and membrane components, distinct 
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metabolic pathways, and enzymes, whereas other features are shared either with bacteria or with 
eukaryotes [4]. Hyperthermophilic archaea such as Aeropyrum pernix and Pyrococcus 

horikoshii growing optimally at≥90°C produce many thermophilic enzymes including 
phospholipase. 

Phospholipases are enzymes that cleave the various bonds in phospholipids. These enzymes 
are various in the active site, physiological function, mode of work, and their regulation [5]. 
According to the position of bond cleavage in their substrates, they are classified into five 
groups: A1, A2, B, C, and D [6]. Phospholipases, as versatile biocatalysts are commonly 
utilized in several industries, for instance, oil degumming, food, detergents, nutraceuticals, 
biodiesels, agriculture, bioremediation, leather, paper, and cosmetics [7-9]. 

The field of machine learning employs the utilization of past data to facilitate the 
development of a predictive model tailored for the projection of future data. The proliferation of 
data in contemporary biology has led to the growing prevalence and versatility of machine 
learning algorithms for categorizing, predicting, and grouping biological data through the 
methods of clustering, regression, and classification [10, 11]. Support vector machine (SVM) 
stands out as a potent machine learning algorithm, capable of predicting the class labels of 
unknown data by leveraging an effective model that is derived from training data [12]. The 
condition in exerting the SVM algorithm is that each class member to be identified must be 
available for training.  The principle of SVM is that attempts to find the most suitable separating 
hyperplane for given datasets which are assumed as points in a high-dimensional space.  
Afterward, based on the placement of an unknown dataset on each side of the learned 
hyperplane, SVM can predict the status of the dataset [13]. An amended version of KNN 
algorithm, Optimized Evidence-Theoretic K-Nearest Neighbor (OET-KNN) is an algorithm 
based on the Dempster–Shafer theory [14]. K-NN is a nonparametric classification model and 
works based on a majority voting mechanism in that for detecting the class of input data, the 
nearest neighbor class is selected among the found k neighbors [14]. Random Forest (RF) 
consists of randomly generated decision trees constructed from a training dataset. Each tree 
predicts a discrete class, then the class of the test data is identified by the class with a greater 
predicted number among the trees [15]. Covariance Discriminant (CD) is derived from 
Mahalanobis distance discriminant with the difference that it applies some corrections to reduce 
the effect of the imbalanced data set on the prediction results [17]. 

There are various methodologies aimed at predicting diverse protein characteristics; 
however, a large number of these approaches emphasize the analysis of amino acid composition 
[16, 17], sequence [18, 19], and template. In this research, we have utilized the concept of 
Chou’s pseudo amino acid composition (PseAAC) to predict archaeal phospholipase enzymes. 
PseAAC displays a protein sequence with a distinct model without thoroughly losing the 
information behind its sequence [20]. Originally, it was developed by Chou in 2001 for 
predicting the protein subcellular localization and membrane protein types [21, 22].  

 
 

MATERIALS AND METHODS 
 
Dataset Selection: The positive dataset for this study was obtained from the National 

Center for Biotechnology Information (NCBI) database, which contained 835 archaeal protein 
sequences of phospholipase. In addition, a negative dataset was also collected from the same 
source, consisting of 711 sequences of non-phospholipase proteins. To safeguard the quality of 
the datasets, sequences that were deemed putative, partial, or fragmental were excluded from 
consideration. The ExPASy website's Decrease Redundancy tool was utilized to ensure optimal 
data quality in our datasets. Specifically, sequences exhibiting below 90% similarity were 
retained to prevent any potential classifier bias. The final positive dataset was including 493 
sequences. Also, negative dataset sequences for archaeal non-phospholipase proteins were 
decreased to 526 sequences. 
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BioSeq-Analysis server: In this research, we used the BioSeq-Analysis server available at 
http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/ which can do automatically the following 
three main steps: selecting features, constructing a predictor, and evaluating the performance of 
the predictor. BioSeq-Analysis is constructed from three sub-servers, DNA-Analysis, RNA-
Analysis, and Protein-Analysis. This web server is a vigorous platform for the analysis of 
biological sequence orders based on machine learning algorithms [23].  

  
Protein-Analysis sub-server: Protein-Analysis sub-server was chosen and the following 

three main steps were performed: 
 
Extracting features: Various PseAAC modes including PC-PseAAC, SC-PseAAC, PC-

PseAAC-General, and SC-PseAAC-General were applied to extract features. For generating 
different kinds of PseAAC, the values of the amino acid physicochemical properties, weight 
factor (w), and correlation rank (λ) were utilized. 

PseAAC of a sample protein is represented by a set of 20+λ discrete factors. The first 20 
ones illustrate the conventional AAC components and the λ factor represents the sequence order 
correlation and incorporated physiochemical features [20, 24]. 

The present study employs PC-PseAAC and SC-PseAAC models, which integrate amino 
acid composition and global sequence-order influences using parallel and series correlation 
mechanisms to generate characteristic protein vectors. The PC-PseAAC-General and SC-
PseAAC-General algorithms, which incorporate 547 physicochemical properties extracted from 
the amino acid index, are augmented with more complex information, such as functional dom-
ain (FunD), sequential evolution, gene ontology (GO), and other customizable properties [25]. 
In this study, for PC-PseAAC and SC-PseAAC modes, hydrophobicity, hydrophilicity and mass 
were selected, while for PC-PseAAC-General and SC-PseAAC-General, in addition to the three 
above-mentioned properties, five additional physicochemical properties from the first line were 
selected. In order to prioritize the incorporation of supplementary pseudo components over 
traditional sequence components, the weight factor (ω) has been developed [26]. Moreover, the 
Lambda parameter (λ) represents the correlation counted rank along a protein sequence. 
Lambda must be adjusted to a positive integer (such as 0, 1, 2) and smaller than L-k, where L is 
the query sequence length and k is the length of the selected oligomer mode [27]. In this study, 
λ and ω parameters were optimized. 

 

Constructing a predictor: Machine learning algorithms such as OET-KNN, RF, SVM, and 
CD were applied for constructing predictors. 

 
Evaluating the performance of the predictor: The efficacy of the developed predictors 

was assessed through the utilization of the 5-fold cross-validation and bootstrapping methods. 
The 5-fold cross-validation method involves partitioning the input data set into five distinct sub-
datasets, of equal size, in a random manner. Two sub-datasets are designated as the validation 
and test sets, while the remaining three sub-datasets are categorized as training sets. 
Optimization of parameters is executed utilizing the validation set, while evaluation of the 
overall system performance is accomplished through the utilization of the test set. The 
procedure is iterated a total of five times to ensure that every sub-dataset serves as the test set at 
least once [30]. In the context of bootstrapping, the benchmark dataset was subjected to 20 
random samplings, and the ultimate outcomes were subsequently derived from the collective 
mean value of these samplings [31]. The effectiveness evaluation was measured via five 
parameters: accuracy (Acc), specificity (Sp), and sensitivity (Sn), Matthews’s correlation 
coefficient (MCC), and area under the receiver operating characteristics (ROC) curve (AUC). 
Furthermore, the ROC curve was generated.  

Acc, Sp, and Sn were calculated according to (Eqs. 1-3) and MCC was calculated according 
to (Eq. 4) that is considered as a balanced measure in which the TP, TN, FP, and FN are taken 
into account.  
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  Acc = (TP+TN)/(TP+TN+FP+FN)                                                                                  (1)                  
  Sp = TN/(TN+FP)                                                                                                           (2)                                                
  Sn = TP/(TP+FN)                                                                                                            (3) 
  MCC = ((TP*TN) – (FP*FN))/√((TP+FP)(TP+FN)(TN+FP)(TN+FN))                        (4) 

 
Where, the abbreviation TP represents the metric of True Positive, which corresponds to the 

numerical value indicating the total count of positive sequences that are correctly identified as 
positive by a particular model or algorithm. The term "FP" refers to False Positive, which 
signifies the number of negative sequences that are erroneously identified as positive. TN refers 
to True Negatives, denoting the number of negative sequences that have been accurately 
classified as negative. FN denotes False Negative, which signifies the number of positive 
occurrences that are characterized as negative [26, 28].  

The variable 'Acc' quantifies the count of sequences which have been accurately classified 
out of the entire set of sequences. This term denotes the accuracy of the classification system 
utilized in the context. The metric referred to as "Sp" in the context of algorithmic performance 
evaluation measures the accuracy with which negative data is predicted by the system, 
specifically with regard to all actual instances of negative sequences. This statistical measure is 
commonly known as the true negative rate. Thus, outcomes that exhibit a substantial degree of 
specificity are dependable in academic discourse. Similarly, the sensitivity (Sn) of a classifier is 
indicative of the true positive sequences predicted as positive. A high Sn value depicts positive 
predicted outcomes that are dependable and accurate. The utilization of MCC is commonly 
applied in the assessment of binary classification. The acceptable range for MCC values is 
continuous and falls within the interval of -1 to +1. A perfect prediction is indicated by a value 
of +1, a value of 0 suggests a random prediction and a value of -1 represents the absolute 
discrepancy between the predicted outcome and the observed result. A classifier with high Sp, 
Sn, and ACC values (approximately more than 70–80%) and an MCC of near +1 is reliable [33, 
34].  

A ROC curve visualizes the effectiveness of classifiers by a two-dimensional depiction. In 
this curve, the y-axis represents the TP rate and the x-axis shows the FP rate. AUC is defined as 
the area under the curve in the unit square, and its value is always between 0 and 1.0 [29].   

 

 

RESULTS  
 
In this study, three steps were performed via the BioSeq-Analysis server. Different PseAAC 

modes were applied. Calculations by BioSeq-Analysis for some of the physicochemical 
properties were considered. Two parameters, λ and w, were optimized. For the analysis of data, 
OET-KNN, RF, SVM and CD classifiers were applied to the dataset. The 5-fold cross-
validation and bootstrapping were carried out to figure out the performance of the predictors. 

The results of PC-PseAAC, PC-PseAAC-General, SC-PseAAC, and SC-PseAAC-General 
modes are summarized in Tables 1, 2, 3 and 4.. All four machine learning algorithms had an 
excellent total accuracy of >= 90% for 5-fold cross-validation, and >= 88% for bootstrapping, 
certifying the provided results.  

According to 5-fold cross-validation: OET-KNN presented the highest values of  Acc 
(95%), Sn (95%) and MCC (0.90). However, the highest specificity (97%) was obtained by RF 
algorithm. Additionally, in both OET-KNN and RF algorithms, the highest value of AUC (0.98) 
was achieved. Among the algorithms, the lowest values for Acc (90%), Sp (91%), Sn (89%), 
MCC (0.80) and the lowest value for AUC (0.09) was attained by SVM and CD algorithms, 
respectively.  

According to bootstrapping: OET-KNN and RF presented the highest values of Acc 
(93%), MCC (0.87) and AUC (0.98). The highest Sn (94%) and Sp (95%) were provided by 
OET-KNN and RF, respectively. The lowest value of AUC was provided by CD classifier. 
Table 1 shows the details of the results provided by each algorithm.  
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Table 1: The performance of the classifiers by PC-PseAAC mode with 5-fold cross validation and 
bootstrapping 

Validation Test 

Algorithm 
5- fold cross validation  Bootstrapping 

SVM RF OET-KNN CD  SVM RF OET-KNN CD 

Accuracy % 90 94 95 92  90 93 93 90 
Specificity % 91 97 95 93  91 95 93 94 
Sensitivity % 89 92 95 92  89 91 94 85 
MCC 0.8 0.89 0.9 0.85  0.8 0.87 0.87 0.8 
AUC 0.96 0.98 0.98 0.09  0.95 0.98 0.98 0.11 
λ 7 7 8 8  8 7 8 8 
w 0.1 0.1 0.1 0.7  0.1 0.1 0.1 0.7 

 
 
According to 5-fold cross-validation:  The OET-KNN provided the highest values of Acc 

(96%), Sn (96%), and MCC (0.92). Although OET-KNN, RF and SVM showed a similarly high 
value for AUC (0.98), CD showed the lowest one (0.11) (Fig. 1). The lowest value for Acc 
(92%), Sn (87%), and MCC (0.86), but the highest Sp (97%) belonged to CD. 

 

 
Figure 1: ROC curve of OET-KNN classifier and SC-PseAAC mode with AUC of 0.98. 

 
 
According to bootstrapping: Similar to the 5-fold cross-validation result, the OET-KNN 

presented the highest values in Acc (95%), Sn (96%), and MCC (0.90). Also,the highest Sp was 
provided by the CD (98%). CD presented the lowest value of AUC while the others had a 
similar value of AUC (0.98). Among the algorithms, the lowest value for Acc (88%), Sn (78%), 
and MCC (0.78) belonged to CD. The detailed results for the performed predictions are 
provided in Table 2. 
 

Table 2: The performance of the classifiers by SC-PseAAC mode with 5-fold cross validation and 
bootstrapping 
Validation Test 

Algorithm 
5- fold cross validation  Bootstrapping 

SVM RF OET-KNN CD  SVM RF OET-KNN CD 

Accuracy % 95 94 96 92  94 94 95 88 
Specificity % 95 96 95 97  94 96 94 98 

Sensitivity % 95 92 96 87  94 92 96 78 
MCC 0.9 0.88 0.92 0.86  0.89 0.88 0.9 0.78 
AUC 0.98 0.98 0.98 0.11  0.98 0.98 0.98 0.13 
λ 9 6 8 4  9 8 8 4 
w 0.3 0.1 0.1 0.1  0.3 0.3 0.1 0.1 
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According to 5-fold cross-validation: Similar to PC-PseAAC result with 5-fold cross-
validation, OET-KNN algorithm showed the highest values for the classification including; Acc 
(95%), Sn (94%) and MCC (0.90). Moreover, the highest value of AUC (0.98) was provided by 
both OET-KNN and RF algorithms. The lowest Acc, Sp, and MCC value was presented by 
SVM algorithm and the lowest Sn and AUC value was provided by CD. 

According to bootstrapping: OET-KNN and RF presented the highest values of Acc (93%) 
and MCC (0.87). The highest Sn (94%), Sp (97%) and AUC (0.98) were provided by OET-
KNN, CD and RF, respectively. CD classifier gave the lowest values of Acc, Sn, MCC and 
AUC. The lowest value of Sp and MCC were obtained by SVM. The detailed results for the 
performed prediction are provided in Table 3. 

 

 

Table 3: The performance of the classifiers by PC-PseAAC-General mode with 5-fold cross 
validation and bootstrapping 
Validation Test 

Algorithm 
5- fold cross validation  Bootstrapping 

SVM RF OET-KNN CD  SVM RF OET-KNN CD 

Accuracy % 90 94 95 91  89 93 93 88 
Specificity % 91 96 95 96  91 95 92 97 

Sensitivity % 89 92 94 86  88 92 94 79 
MCC 0.8 0.88 0.9 0.84  0.79 0.87 0.87 0.79 
AUC 0.95 0.98 0.98 0.1  0.95 0.98 0.97 0.12 
λ 9 3 3 8  9 3 3 8 
w 0.3 0.3 0.1 0.1  0.3 0.5 0.1 0.1 

 
 
According to 5-fold cross-validation: The highest values in Acc (96%) and MCC (0.92) 

were provided by the SVM model, but the highest Sp (98%) and Sn (96%) were provided by the 
CD and OET-KNN, respectively. For the AUC value, CD had the lowest value and the three 
others had a similarly high value of 0.98. Among the applied algorithms, the lowest value for 
Acc (92%), Sn (85%), and MCC (0.85) belonged to the CD classifier.  

According to bootstrapping: Like previous 5-fold cross-validation results, the SVM model 
presented the highest values in Acc (95%) and MCC (0.90), but the highest Sp (98%) and Sn 
(96%) were provided by the CD and OET-KNN, respectively. CD model presented the lowest 
value of AUC while the three others gave a similar value of AUC (0.98). Among the algorithms, 
the lowest value for Acc (90%), Sn (80%), and MCC (0.81) belonged to CD. The detailed 
results for the performed prediction are provided in Table 4. 
 
 

Table 4: The performance of the classifiers by SC-PseAAC-General mode with 5-fold cross 
validation and bootstrapping 

Validation Test 

Algorithm 
5- fold cross validation  Bootstrapping 

SVM RF OET-KNN CD  SVM RF OET-KNN CD 

Accuracy % 96 94 95 92  95 94 94 90 
Specificity % 97 96 95 98  96 95 93 98 

Sensitivity % 95 91 96 85  94 92 95 80 
MCC 0.92 0.88 0.91 0.85  0.9 0.88 0.88 0.81 
AUC 0.98 0.98 0.98 0.09  0.98 0.98 0.98 0.14 
λ 8 6 6 3  8 3 6 3 
w 0.9 0.1 0.1 0.1  0.9 0.1 0.1 0.1 

 
 

DISCUSSION 

 
Machine learning computer programs are used to find meaningful patterns in data. The 

practical implementation of machine learning has garnered widespread attention in scientific 
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disciplines including bioinformatics and medicine [36]. One of its applications is data 
classification such as classification of the large datasets of various enzyme molecules [37]. 

Phospholipases refer to a class of lipolytic enzymes that specifically catalyze the hydrolysis 
of ester bonds in phospholipid substrates, and are characterized by their broad range of 
functional applications [30]. Archaea are a cohort of life forms that bear resemblance to 
bacteria, yet distinguish themselves through their unique evolutionary lineage. Numerous 
instances of archaeal organisms inhabiting extreme environments, such as areas characterized 
by elevated pressures, salt concentrations, or temperatures, have been uncovered through 
scientific inquiry. In recent years, there has been a growing interest in the potential industrial 
applications of thermostable phospholipases derived from archaea [31]. Due to the significant 
value of archaeal phospholipases, it is imperative to undertake the task of anticipating and 
categorizing them from other enzymes. Therefore, it would be of great benefit to gather data 
regarding the effectiveness of various machine learning algorithms, which could facilitate 
further exploration of this enzyme and aid in the creation of a server for data classification [14]. 
In the present investigation, a set of machine learning algorithms, for example, OET-KNN, RF, 
SVM, and CD were employed along with two evaluation tests to investigate the data analysis 
and interpretation of PseAAC. 

Chou’s PseAAC [38] has emerged as a powerful technique for protein categorization. To 
avoid the complete deprivation of sequence-pattern data for proteins, PseAAC [26] has been 
developed. 

Different types of PseAAC are employed to predict protein structural class [32], bacterial 
secreted proteins [33], cyclins [34], risk type of human papillomaviruses [35], enzyme 
subfamily classes [24, 36, 37], G-protein coupled receptor classes [38-40], cell wall lytic 
enzymes [41], subcellular localization of apoptosis proteins [42, 43], lipase types [44], 
subcellular localization of mycobacterial proteins [45], cofactors of oxidoreductases [46], DNA-
binding proteins [47], quaternary structural attributes [48], proteases and their types [49] 
GABAA receptors [50] and Glutathione S-transferases [51-53]. 

BioSeq-Analysis, a platform established in 2017, is introduced for the primary purpose of 
analyzing diverse DNA, RNA, and protein sequences at the sequence level, utilizing machine 
learning techniques and diverse modes, including distinct varieties of PseAAC and Kmer. 
BioSeq-Analysis is increasingly applied in many areas of computational biology [25]. 

According to the results provided in this research, we can notice that based on three types of 
PseAAC, OET-KNN algorithm had the highest accuracy in both performance evaluation tests, 
however SVM had the highest accuracy in just one type of PseAAC. It is interpreted from very 
high values of accuracy (96%), specificity (95%), sensitivity (96%), MCC (0.92) and AUC 
(0.98) obtained by OET-KNN (in SC-PseAAC mode and 5-fold cross-validation) that OET-
KNN predictor is a powerful machine learning algorithm for the classification of enzymes as 
phospholipase or non-phospholipase. MCC value of 0.92 confirms the significant ability of 
OET-KNN in prediction and AUC value of 0.98, near to 1, means that OET-KNN is a realistic 
classifier and its result is very reliable. 

In Shen and Chou's investigation, OET-KNN classifier and PseAAC method were utilized 
to predict membrane protein types. The Overall rates of correct prediction obtained by OET-
KNN and PseAAC were 99.5, 84.7 and 94.2 % in self-consistency, jackknife, and independent 
dataset tests, respectively. These values were higher than those obtained by  other approaches. 
OET-KNN classifier may have a positive impact in improving the prediction quality for many 
other protein attributes, such as protein structural class, protein subcellular localization, enzyme 
family and subfamily class, G-protein coupled receptor type, and protein quaternary structure 
types.  

 In our study, OET-KNN achieved a very high accuracy, because the OET-KNN rule 
obtained through an optimization treatment could lead to a substantial improvement in 
classification accuracy and improve prediction quality.    
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Currently, there exists no anticipatory server for archaeal phospholipases in the academic 
literature. The present study illustrates that the utilization of Chou's PseAAC and OET-KNN 
models is an efficient approach for the anticipation of phospholipases in archaea. 
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