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ABSTRACT 
 

L-asparaginase is a commercial enzyme with a wide variety of applications. Asparaginase is 

known as an anti-cancer agent that is effective for the treatment of certain lymphomas and 

leukemias by growth inhibition of human cancer cells. Additionally, asparaginase is used in the 

food industry in a pretreatment process to decrease the accumulation of carcinogenic 

acrylamide. In this paper, different aspects of bacterial and fungal asparaginases such as mass, 

hydrophobicity and hydrophilicity of pseudo amino acid composition (PseAAC), physicochem-
ical properties, and structural motifs were studied, and ROC curve statistical analysis was used 

for the comparison. The results showed that none of the physicochemical properties of fungal 

and bacterial asparaginase could not be differed, except molecular weight and sequence length. 

MEME Suite analysis demonstrated that there was a motif that was specific for bacterial 

asparaginases. However, analysis based on the concept of PseACC indicated a differentiation 

line between fungal and bacterial asparaginases. In conclusion, although there was not any 

specific demonstration to separate the bacterial and fungal asparaginases in the case of 

physicochemical properties, PseAAC analysis can be an appropriate and usable method to 

differentiate between them. 
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INTRODUCTION 
 

L-asparaginase (L-Asparagine amidohydrolase, EC 3.5.1.1) catalyzes the hydrolysis of 

asparagine amino acid to aspartic acid and ammonia [1]. It can also break down glutamine into 

ammonia and glutamic acid. Asparaginase has been found in tetrameric, dimeric, hexameric, 

and monomeric forms when extracted from different sources [2]. In addition, it was identified 

that there were two isozymes of asparaginase called type 1 and type 2 [3]. However, type 2 has 

a higher affinity for asparagine than type 1 [4]. Studies have reported the presence of 

asparaginase in various sources including animals, plants, and microorganisms (bacteria, fungi, 

algae, and yeasts). In recent years, many papers have focused on this enzyme’s ability because 

of its biotechnological applications and simplicity of large-scale production [5].  

The first reason for asparaginas importance is the antineoplastic property that scientists and 

researchers broadly have observed it strong. Neoplastic cells cannot produce asparagine for their 

metabolic needs due to the low expression or absence of the asparagine synthetase gene. 
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Therefore, they provide their required asparagine from the surrounding environment. In this 

regard, asparaginase is an induction chemotherapy standard treatment option against tumor cell 

growth for acute lymphocytic leukemia (ALL) [2, 5]. The main microbial asparaginase 

resources for medical approaches are Escherichia sp. and Erwinia sp [1].  

L-asparaginase also has a potential role in the food industry as a food processor [6]. 

Acrylamide is a suspected carcinogen, made in cooked food, and asparaginase is used to reduce 

acrylamide formation [7]. Asparaginases from diverse sources such as Aspergillus niger and A. 

oryzae have been assayed in acrylamide reduction in different foods [8]. 

Regarding asparaginase applications in therapy and biotechnology, there is a problem that 

should be considered. Prokaryotic resources of asparaginase production can have side effects in 

long-term therapy including hypersensitivity and immune reactions [9]. To solve this problem, 

finding new eukaryotic sources of asparaginase production can be a considerable solution. 

According to the solution mentioned above, it is important to know which asparaginase 

source is superior in fungi and bacteria based on physicochemical features. Nowadays, 

bioinformatics is developed to help researchers with the classification and prediction of various 

aspects of enzymes to save time and cost.  

Several studies about amino acid sequence and protein structure analysis of enzymes have 

been reported in the last decade. The amino acid composition of L-asparaginases from fungi, 

bacteria, and plants was widely studied and compared to differentiate each asparaginase 

sequence [10-11]. In-silico characterization of fungal asparaginase sequences as well as 

biochemical characters of the purified enzymes was investigated [12]. Physicochemical 

properties of endophytic bacterial asparaginase enzymes were characterized by some 

bioinformatics tools [13]. In the present study, in-silico characterization of fungal asparaginases 

were compared with bacterial asparaginases for the first time.  

 

 

MATERIALS AND METHODS 
 

Datasets of L-asparaginase: Protein sequences of bacterial and fungal asparaginase were 

selected from NCBI (https://www.ncbi.nlm.nih.gov). 786 and 8342 asparaginase protein 

sequences from fungi and bacteria, were chosen as our datasets, respectively. To cluster 

repeated and similar sequences and choose a representative sequence, the CD-HIT program 

(http://cd-hit.org) and Decrease Redundancy sever from Expasy (https://web.expasy.org) with 

95% sequence identity cutoff   were employed. The final results included 281 and 229 bacterial 

and fungal sequences, respectively. 

 

Physicochemical parameters analysis: Physicochemical properties of primary protein 

sequences of fungal and bacterial asparaginases were predicted by ProtParam tool 

(https://web.expasy.org). ProtParam is available on Expasy website. The properties consisted of 

sequence length, molecular weight, theoretical PI, aliphatic index, instability index, positively 

charged, negatively charged, and grand average of hydropathicity (GRAVY). 

 

Pseudo amino acid compositions (PseACC): Identifying various features of 

uncharacterized proteins is one of the most important tasks facing us today in bioinformatics 

because its obtained information has a significant effect on the improvement of system’s 

biology and proteomics [14]. That’s why the concept of PseACC was introduced in 2001 [15]. 

PseACC is based on both amino acid composition and sequence order effect. This method is 

introduced to extract the features of amino acid composition and physical and chemical 

characteristics of amino acids [16]. In another word, PseACC is described by a set of 20+λ 

distinct factors. The 20 part shows the AAC components and the λ part illustrates sequence 

order correlation [17]. PseACC plays an important role in converting a character sequence of a 

protein to a numerical sequence. The feature descriptor extraction and model construction were 

implemented in a machine-learning platform that served as protein sequence analysis and 
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prediction [18]. Different physicochemical parameters like hydrophobicity, hydrophilicity, and 

side chain mass are the factors to make such a conversion [19].  

In this study, BioSeq-Analysis 2.0 web server (http://bliulab.net/BioSeq-Analysis2.0/) was 

utilized to achieve the numerical sequence. Four machine learning algorithms with diverse 

component modes were analyzed. The first machine learning algorithm was support vector 

machine; a powerful classification method based on the idea of the generalized linear classifier 

[20]. OET-KNN algorithm was the second one, worked based on the Dempster-Shafer theory. 

Each neighbor in a pattern was classified as evidence supporting certain hypotheses [21]. 

Another machine was Random Forest which represented randomly generated trees, predicted 

different classes as a training dataset, and then the class with a greater predicted number among 

the trees was implemented as the test data [22]. The last platform was Covariance Discriminant 

machine-learning. This analysis was the formulation of classifying rules based on multiple 

training datasets which are classified by those determined rules [23]. The results of the 

assessment were evaluated via five parameters: ACC (Overall accuracy), MCC (Mathews 

Correlation Coefficient), AUC (Area under the curve), Sn (Sensitivity) and Sp (Specificity). 

ACC, MCC, Sn and Sp were calculated referring to Eqs (1-4) [17].    

(1) Acc = (TP+TN)/(TP+TN+FP+FN)  

(2) MCC = ((TP*TN) – (FP*FN))/√((TP+FP) (TP+FN) (TN+FP) (TN+FN))  

(3) Sn = TP/(TP+FN)  

(4) Sp = TN/(TN+FP)  

TP, TN, FP and FN are, respectively short form of True Positive, True Negative, False 

Positive and False Negative.         

 

Secondary structure analysis: It is proved that structural information provides insight into 

protein function [24]. In this regard, we can employ automatic database search methods to 

design drugs and understand more details of protein-protein interaction networks [25]. For 

predicting the secondary structure of the protein, the Garnier-Osguthorpe-Robson IV (GOR IV) 

online tool (https://npsa-prabi.ibcp.fr/) was used [26] ,and Alpha helix, extended strand, and 

random coiled were predicted. 

 

Motif discovery: The conserved motifs in bacterial and fungal asparaginase were predicted 

by the MEME Suite web server (http://meme.nbcr.net). Analysis of motif sequences represents 

features like DNA binding sites and protein interaction domains [27]. For predicting domains 

and the family relations of characterized motifs, InterPro (https://www.ebi.ac.uk) was employed 

[28]. Here, conserved motifs in both bacterial and fungal asparaginases were compared. 

 

Statistical analysis: Statistical tests were introduced to compare two or more different 

diagnostic systems [29]. To compare amino acid composition and secondary structure 

physicochemical properties of asparaginases between bacteria and fungi sequences, Receiver 

Operator Characteristic (ROC) curve analysis (http://melolab.org/star/roc_analysis.php) was 

used. Accuracy (ACC) is the parameter that describes a binary classification. The acceptable 

classification performance is described when ACC is more than 80%. Bio-seq Analysis 2.0 

server also uses the ROC analysis system for comparison.  

 

 

RESULTS  
 

To evaluate the results of ProtParam server, ROC curve was used (Table 1). Two 

parameters, sequence length and molecular weight, showed the differences between bacterial 

and fungal enzymes receiving more than 80% accuracy. However, other physiochemical 

properties did not show significant differences. In addition, the frequency of all 20 amino acids 

in bacterial and fungal asparaginases was determined (Table 2). ROC curve indicated that 

http://mbrc.shirazu.ac.ir/
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bacterial asparaginases could be distinguishable from fungal asparaginases in aspect of amino 

acid frequency such as glutamic acid, glycine, cysteine, and serine. 

 

 
Table 1: ROC curve analysis of ProtParam results 

Physico-chemical parameters ACC 

Theoretical PI 0.6503 

Instability index 0.6523 

Sequence length 0.9198 

Molecular weight 0.8959 
Aliphatic index 0.6405 

GRAVY 0.5658 

(The acceptable results were shown in bold)  

 

 
Table 2: ROC analysis of amino acids frequency between bacterial and fungal asparaginases  

Amino acids ACC 

Alanine 0.7390 

Arginine 0.7217 

Asparagine 0.5797 

Aspartic acid 0.6027 

Cysteine 0.8503 
Glutamine 0.5739 

Glutamic acid 0.8292 

Glycine 0.8484 
Histidine 0.6679 

Iso leucine 0.7044 

leucine 0.7447 

Lysine 0.6833 

Methionine 0.5854 

Phenyl alanine 0.7639 

Proline 0.6718 

Serine 0.8292 
Threonine 0.6180 

Tryptophan 0.4395 

Tyrosine 0.6641 

Valine 0.6814 

(The acceptable results were shown in bold) 

 

 

For analyzing the results of PseACC, four types of machine learning algorithms while 

considering three physicochemical parameters (mass, hydrophobicity, hydrophilicity), were 

used (Table 3). The results showed that bacterial and fungal Asparaginase sequences were 

significantly different. The highest performance was achieved by OET-KNN machine-algorithm 

(ACC 99.06%). 

The results of secondary structure prediction were evaluated using ROC curve analysis 

(Table 4). In the case of the secondary structure prediction, the results exhibited that bacterial 

Asparaginases were not significantly different from fungal asparaginases. ACC values of all 

three parameters were less than 80%. 

MEME suite server highlighted three bacterial (Motif A, B, and C) and three fungal 

asparaginase motifs (Motif A, B, and C). InterPro server expressed family relations and length 

of bacterial and fungal asparaginase motifs, which are shown in Figures 1 and 2. On average, 

fungal motifs were shorter than bacterial ones. Motifs A and B of bacterial asparaginases 

belonged to the same family type as Motifs A and B of fungal sequences. Motif C of bacterial 

sequences was a member of asparaginase/glutaminase-like. While fungal Motif C was 

characterized as a member of the asparaginase II family. 

http://mbrc.shirazu.ac.ir/
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Table 3: The results of four different machine-learning algorithm 

Random Forest machine-learning algorithm 

ACC 0.9891 

MCC 0.9777 

AUC 0.9997±0.0004 

Sn 0.9858 

Sp 0.9935 

Support vector machine-learning algorithm 

ACC 0.9784 

MCC 0.9551 

AUC 0.9957±0.0033 

Sn 0.9825 

Sp 0.9724 

Covariance Discriminant machine-learning algorithm 

ACC 0.9555 

MCC 0.9137 

AUC 0.2904±0.054 

Sn 0.9235 

Sp 1.0 

OET-KNN machine-learning algorithm 

ACC 0.9906 

MCC 0.9808 

AUC 0.9978±0.0028 

Sn 0.991 

Sp 0.9901 

(The acceptable results were shown in bold) 

 

 
Table 4: ROC analysis of GOR IV server results between 

bacterial and fungal asparaginase sequences 

parameters ACC 

Alpha helix 0.7894 

Extended strand 0.6978 

Random coiled 0.6777 

 

 
Figure 1: The most probable motifs in bacterial sequences. Motif A. 50 amino acids; Family type: 

Asparaginase/glutaminase-like; Domain type: Asparaginase, N-terminal; Homologous Superfamily: Asparaginase/ 

glutaminase-like, Asparaginase, N-terminal domain superfamily; Active site type: Asparaginase/glutaminase, active 

site 2. Motif B. 50 amino acids; Family type: Asparaginase/glutaminase-like; Domain type: Asparaginase, C-

terminal; Homologous Super Family: Asparaginase/glutaminase-like, Asparaginase, C-terminal. Motif C. 41 amino 

acids, Family type: Asparaginase/glutaminase-like; Homologous Superfamily: Asparaginase, N-terminal domain 

superfamily. 
 

 

Four physicochemical properties (theoretical PI, instability index, aliphatic index, and 

Gravy) of all three types of enzyme motifs in bacteria and fungi were selected and analyzed by 

ROC analysis. The results shown in Table 5, indicated that bacterial asparaginase Motif C was 
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different from fungal asparaginase Motif C in the case of aliphatic index, GRAVY, theoretical 

PI, and instability index. ROC analysis and InterPro results both showed the difference between 

bacterial and fungal asparaginases in Motif C. Therefore, it was concluded that the results of 

ROC analysis were correlated with InterPro results.  

 

 

 
Figure 2: The most probable motifs in fungal sequences. Motif A. 23 amino acids, Family type: Asparaginase/ 

glutaminase-like; Domain type: Asparaginase, N-terminal; Homologous superfamily: Asparaginase/glutaminase-like. 

Motif B. 36 amino acids, Family type: Asparaginase/glutaminase-like; Domain type: Asparaginase, N-terminal; 

Homologous superfamily: Asparaginase/glutaminase-like. Motif C. 50 amino acids, Family type: Asparaginase-II.  

 

          
 Table 5: ROC analysis of physicochemical properties of motifs A, B and C 

Physico-chemical properties Motif A (ACC) Motif B (ACC) Motif C (ACC) 

Aliphatic index    0.5135 0.6850 0.8421 
Instability index 0.3321 03223 0.8421 
Theoretical PI 0.6679 0.6286 0.8483 
GRAVY 0.6750 0.6777 0.8483 

 

 

DISCUSSION 

 

The purpose of this study was to compare bacterial and fungal asparaginase’s different 

cases. Bacterial asparaginases were compared to fungal asparaginases by computational 

methods for the first time. In this regard, powerful bioinformatics techniques such as 

physicochemical properties, secondary structure, PseAAC, and motif analysis tools were used.  

Our results exhibited a separation line between bacterial and fungal asparaginase sequences 

in some physicochemical parameters. The Molecular weight and sequence length of 

asparaginase between fungi and bacteria showed a critical difference. Since fungi being 

eukaryotes, it is expected that fungal asparaginase sequences are heavier, and longer than 

bacterial sequences, and our efforts showed the same outcome. Amino acid composition 

analysis of bacterial and fungal asparaginases expressed a significant difference in the frequency 

of a few amino acids such as glutamic acid, glycine, serine, and cysteine. The Aliphatic index is 

the parameter that demonstrates the volume of aliphatic side chains (alanine, valine, isoleucine, 

and leucine) that are present in a protein. The aliphatic index of fungal asparaginase motifs was 

greater than bacterial asparaginase motifs. Because the aliphatic index could be an effective 

factor for the increase of thermostability of the protein, fungal asparaginases may be more 

practical than bacterial asparaginases in industrial applications. Regarding the instability of the 

protein, if the index is smaller than 40, it means that the protein is stable which is the state that 

the optimal activity could be seen [30]. Our results showed that there was no difference in the 

case of stability between fungal asparaginases and bacterial asparaginases. GRAVY is 

considered as hydropathy value of amino acid composition. When this index is negative, the 

http://mbrc.shirazu.ac.ir/
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peptide is hydrophobic [31]. In bacteria, the number of hydrophobic asparaginases was more 

than in hydrophilic ones. But, in fungi, it was inverted. However, ROC analysis received an 

accuracy of 56.58%. According to the motif’s investigation outputs, the one and only difference 

between bacterial and fungal sequences was seen in motif C with a low accuracy (84.21%). 

Previous studies have proved that Chou’s PseAAC was a useful technique to classify 

proteins. In 2017, the dissimilarity between Reverse transcriptase enzyme of HIV-1 and HIV-2 

was explained using statistical analysis of PseAAC [32]. In one paper, the result of Lipase 

enzyme classification between two groups of bacteria and fungi presented over 80% accuracy 

based on the concept of PseAAC [33]. Sudheer Gupta and his colleagues compared the toxicity 

of peptides and proteins with various prediction models in the case of PseACC [34]. In 2019, 

Random Forest machine learning was examined as a model for predicting the difference 

between toxin and non-toxin peptides of animal [35]. In a published paper in 2020, the PseAAC 

of Alkaline phosphatase in one class and Acid phosphatase in another class was analyzed [36]. 

Our results confirmed the efficiency of PseACC technique to achieve more than 95% accuracy 

regarding three physicochemical features (mass, hydrophobicity, hydrophilicity) for all four 

machine algorithms. While, in other analyzed severs, there was not such accuracy that was 

revealed from BioSeq-Analysis server. This represents that using Chou’s PseAAC helps us to 

predict whether a given asparaginase sequence is related to bacteria or fungi.  

These days, our concern is to find asparaginase from eukaryotic sources with lower toxicity, 

adverse effects, higher activity levels, and large-scale production to replace bacterial sources 

usage for therapeutic and industrial purposes. Our bioinformatical analysis showed differences 

in some ways particularly the BioSeq-Analysis outcomes that surprised us in the way of its 

accurate precision. In the future, our efforts can go in a way that analyzes more aspects of the 

asparaginase by computational techniques with higher accuracy. 
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