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ABSTRACT 
 

Dedifferentiated Liposarcoma (DDLPS) is one of the common subtypes of liposarcoma that 

is considered a highly malignant category. This study aims to investigate DDLPS through a 

system biology approach. The gene expression profiles and clinical traits of the DDLPS were 

acquired from The Cancer Genome Atlas (TCGA). The identification of co-expressed modules 

was conducted using the weighted gene co-expression network analysis. The immune cell-

related gene function was studied by a web-based tool, TIMER, and, the survival analysis was 

performed at both the module and single-gene levels through Cox Regression analysis. Gene 

enrichment analysis was also conducted using the DAVID tool. One of the nine co-expressed 

DDLPS modules was significantly correlated with leukocyte fraction, hyper/hypo methylation, 

tumor purity, and chromosome instability (CIN). Based on the biological processes used to 

classify genes, the hub genes in a particular module play important roles in DNA repair, 

microtubule organizing clusters, mitotic checkpoint dysregulation, and cell proliferation 

signaling pathways. After screening the genes based on intra-module connectivity, module 

membership, and gene significance RAD54L was selected as one of the important hub genes. 

RAD54L showed poor prognosis to the overall survival (OS) analysis (HR=1.6, 95% CI=1.1–

2.4, p=0.02). No co-expressed modules had relationship with OS. Through DDLPS traits, CIN 

and hyper/hypo methylation had significant negative relationship with OS. Our achievement 

confirmed the inverse association between tumor purity for DDLPS gene profiles and leukocyte 

fraction and negative leukocyte fraction (LF) gene significance in some genes was justified 

according to the sub-population analyses of immune cells in TIMER.  
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INTRODUCTION 
 

Liposarcoma (LPS) is a soft tissue sarcoma that constitutes approximately 20% of all 

malignant mesenchymal neoplasms. LPS can be classified into four subtypes, based on their 

unique clinical and biological features, which include well-differentiated LPS (WDLPS)/ 

Atypical lipomatous tumor (ALT), dedifferentiated LPS (DDLPS), round cell/myxoid LPS 

(MLPS), and pleomorphic LPS. WDLPS and DDLPS, the two most prevalent subtypes of LPS, 

account for about 45% of all liposarcomas [1]. DDLPS is considered a highly malignant 

liposarcoma that develops from WDLPS that has been dedifferentiated [2].  

Genetic studies in DDLPs are limited. Genetically, DDLPS and WDLPS are characterized 

by potential gene amplification of chromosome 12 (12q13-15), especially in MDM2 and cyclin-

dependent kinase 4 (CDK4) oncogenes, providing several roles in tumorigenesis [3, 4]. 

Furthermore, the overexpression of these two genes' proteins in these tumors has been reported 

[5]. MDM2, a negative regulator of p53, and CDK4, a crucial regulator of the G1/S cell cycle 

checkpoint, are amplified in 100% and 92% of patients, respectively [1, 4]. Other genes 

amplified on this chromosomal area are HMGA2, TSPAN31, DDIT3, and FRS2, which could be 

involved in the pathogenesis of DDLPS [4, 6]. The comprehensive genomic analysis explored 

the clinical characteristics of DDLPS with amplification of 12q13-15. Based on this 

investigation, the clinical prognosis could be predicted depending on somatic copy-number 

alterations (SCNA) and pattern of DNA methylation [1]. The clustering of DDLPS tumors into 

three groups, with independent clinical outcomes, is reported based on the correlation between 

clinical characteristics and SCNAs [3]. 

Unfortunately, notable local and metastatic recurrence rates are reported due to the deep 

location and, subsequently, incomplete surgical resection [2]. Regarding the limitations of 

surgery, chemotherapy, and radiotherapy in the treatment of sarcoma, there is a need to develop 

new treatment strategies based on the molecular heterogeneity of different subgroups of 

liposarcomas. A significant obstacle to the development of personalized therapies is the distinct 

genetic, epigenetic, and transcriptome variations in sarcomas [1]. 

Unrevealing the underlying disease mechanisms helps us to develop potential targeted 

therapies. Gene dysregulation is not the only factor that should be assessed in carcinogenesis; It 

is crucial to assess the gene regulatory interactions that cause heterogeneity. Since focusing only 

on the differential expressed genes (DEGs) limits the concurrent recognition of many other 

genes, potential target genes should be assessed by modeling gene interactions. Recently, 

patient-specific gene regulatory network analysis proposed a potential personalized medicine 

approach in leiomyosarcoma [7]. 

In this paper, weighted gene co-expression analysis (WGCNA), a framework for 

constructing gene co-expression networks, was applied to find the co-expressed genes related to 

clinicopathologic traits in liposarcoma patients. Finally, related biological pathways and 

significance genes were investigated. The main goal was to use the available data collection on 

DDLPS to study the genetic background of some genes involved in carcinogenic characteristics. 

The characteristics related to leukocyte fraction, hyper/hypo DNA methylation, chromosomal 

instability, and tumor purity in the tumor mass were important phenotypic specifications 

investigated in this study. 

 

 

MATERIALS AND METHODS 
 

The Study Design: The phases and conceptual designs of this research were illustrated in a 

workflow diagram based on the executed steps (Fig. 1). The first three parts of this research are 

data collection, preprocessing, and filtering. The DDLPS co-expression network was built in the 

fourth step using the provided gene expression data. The "module-trait relationship", "survival 

analysis for each module", and "trait effect analysis on survival endpoint" were all done 

individually in the following phase. Finally, in each module, gene ontologies and pathways 
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associated with some selected genes were studied. The WGCNA gene significance assessment 

was used to define the basis of gene selection [8]. Each module contains the hub genes, and the 

computational analysis was carried out using the R platform (version 3.6.1).  

 

 
Figure 1: DDLPS Research Workflow Diagram. The flow diagram depicts the sequential steps for 

preparing and analyzing DDLPS data. Data preparation consists of the processes of "Data Collection", 

"Data Preprocessing", and "Data Filtering". DDLPS data were obtained from the TCGA. The next step is 

to identify the co-expression modules. Following the construction of the DDLPS co-expression, three 

analyses are carried out: the "Module Trait Relationship Analysis", the "Module Survival Analysis", and 

the "Traits Effect Analysis on Survival Endpoint". After that, GOs and pathways connected to each 

module's top ranked Gene Significance are investigated. Likewise, hub genes identified based on modules 

network properties such as K-within, MM, and GS. 

 

Dataset and Preprocessing: Dediferentied liposarcoma RNA-seq datasets were 

investigated on different databases. The cancer genome atlas (TCGA) as one of the main and 

perfect databases was used to obtain DDLPS gene expression data, overal survival, and tumor 

size of patients. Likewise, some clinical trait such as leukocyte fraction, tumor purity, and 

chromosome instability were extracted through paper entitled “Comprehensive and Integrated 

Genomic Characterization of Adult Soft Tissue Sarcomas”. That was written by the cancer 

genome atlas research network. In this paper, the authors estimated leukocyte fraction in each 

tumor by calculating the leukocyte signature from methylation results as described in that paper. 

In addition, tumor purity estimates were calculated using the ABSOLUTE algorithm [9]. 

Related to finding hypo/hyper methylation trait, they applied unsupervised consensus 

clustering of DNA methylation on DDLPS samples. All related results for hypo/hyper meth, 

leukocyte fraction, tumor purity, and CIN are accessible in supplementary of that paper [1, 10]. 

The TCGAbiolinks package was utilized to download TCGA DDLPS count files [11]. The 

Transcripts Per Million (TPM) method was used to normalize the obtained TCGA expression 

data. The log2 function was applied to transfer normalized data to a new space. The "BatchQC" 

package was utilized to detect batch effects [12], and the batch effect correction was carried out 

using the "sva" package [13]. BatchId was defined as "PlateId", "ShipDate", and "Tissue Source 

Site" in relation to TCGA data. With the parametric adjustment for reducing batch effects in the 

TCGA dataset, the ComBat function in the "sva" package was invoked (Supplementary Fig. 

S1). Outlier detection was performed through hierarchical clustering on DDLPS samples during 

the data preprocessing step. Using the "avarage" method, the hclust function was used to create 

hierarchical clustering (Fig.2). To the adaptive branch pruning, the "dynamicTreeCut" package 

was applied to the samples' dendrogram. It was evident from the cutreeDynamic function 

through "tree" method (argument) that one sample was an outlier (Supplementary Fig. S2). The 
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goodSamplesGenes function in the WGCNA package was called to remove missing entries in 

the DDLPS dataset. 

This study focused on protein-coding genes and the analysis was limited to the most 

connected genes with non-zero variance. Connectivity was calculated between all protein-

coding genes using the soft connectivity function (softConnectivity) from the WGCNA package 

[8]. Subsequently, the top 5,000 genes were chosen as the top 5000 most connected genes.    

 

 
Figure 2: TCGA 57 DDLS via TPM Normalization Sample clustering to detect outliers 

 

Weighted Gene Co-expression Network Construction: DDLPS co-expression network 

was constructed through the WGCNA package. WGCNA constructs a network based on the 

correlation between pairs of genes. To calculate the correlation between each pair of genes, the 

biweight midcorrelation (bicor) method was used in this study [14]. Table S1 presents all 

functions involved in constructing the DDLPS co-expression network. We used the signed 

hybrid type for the co-expression network. 

 

Finding Significant Clinical Modules: The correlation between WGCNA-released 

modules and traits, and survival analysis is used to find significant clinical modules. Module 

eigengene (ME) was applied to calculate the relationship between modules and clinical traits. 

The selected traits include Age, Tumor size, Leukocyte Fraction (LF), Cancer DNA fraction, 

Hypo/Hyper Methylation, Purity, and Chromosome instability (CIN). The Pearson correlation 

coefficient was performed to identify desirable modules. Likewise, the absolute correlation 

value between the gene and the trait was used to calculate trait-based gene significance. 

Consequently, module significance (MS) was calculated by each module's average gene 

significance (GS) measurements, and the interested significant module–traits were selected 

based on a high correlation between modules and traits.  

 

Hub Genes Identification: In general, high module membership (MM) and gene 

significance (GS) values indicate the biological and statistical relevance of a gene. We also 

employed the high intra-connectivity (K-within), in accordance with the gene's MM and GS 

values, for hub gene discovery, per the study of Y. Lou et al.  [15]. The module membership 

was measured with a correlation study between each gene and module eigengene. The 
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interconnectivity was calculated by intramodularConnectivity function in WGCNA [9]. 

Specifically, LF analysis was performed for immune cell function/features-related genes using 

TIMER as a web-based tool [16]. 

 

Survival Analysis: Two packages, Survival [17] and Survminer [18] were used to identify 

the relationship between traits and survival endpoints. The effect of tumor size, cancer DNA 

fraction, hypo/hyper methylation, purity, and CIN as independent variables on survival 

endpoints were checked through univariate Cox regression. Overall survival (OS) and 

progression-free interval (PFI) were studied for survival analysis. The relationship between the 

DDLPS co-expression network modules and the survival endpoints was investigated in relation 

to identifying relevant clinical modules. The ME, as the representative of each module, was 

selected to define the association of each module with survival endpoints. So, each ME was 

classified as "low" (i.e., –) and "high" (i.e., +) for multigene associations [19]. After that, 

univariate Cox regression, Hazard Ratio (HR), and K-M plot were executed for each module 

using log-rank tests. Finally, single gene survival analysis was utilized through RegParallel [20]. 

  

Functional Annotation: Gene enrichment analysis was conducted using the database for 

annotation, visualization, and integrated discovery (DAVID) [21]. Depending on the DAVID 

outcome, gene ontology (GO) and various pathways for selected genes were investigated in the 

case of biological process (BP), molecular function (MF), and cellular component (CC). To 

explore relevant biological pathways, we studied selected genes in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and Reactome. p-value and false discovery rate (FDR) were 

considered <0.05 as significant ones. The selected hub genes were sub-classed into some 

categories in the case of molecular biology pathways and their main impact on mitosis, DNA 

replication, and cell proliferation-related genes using NCBI-KEGG platforms. 

  

 

RESULTS  
 

Among fifty-eight patients with DDLPS in TCGA, two cases, including "TCGA_DX_ 

A7EI" and "TCGA_MO_A47P" were removed in the preprocessing step. The first one belongs 

to a batch with just one patient, and the second one was an outlier. The dendrogram of DDLPS 

samples for pruning has been shown in supplementary figure S2. The soft-thresholding 

approach was applied to the construction of the DDLPS co-expression network. According to 

the network topology analysis for different soft-thresholding powers, (β=1-20), the optimum β 

was considered 12 to meet the scale-free topology by fit index greater than 0.85. The detailed 

results of several powers for finding a network with scale-free topology properties are shown in 

supplementary figure S3.  

The Log connectivity (k) and probability of connectivity (P(k)) were investigated through 

scaleFreePlot After TOM building, the hierarchical clustering was created based on the TOM 

dissimilarity measure, as shown in Figure 3. We identified fourteen modules through this 

process which decreased to nine after the merging procedure (Fig. 3).  

The result of this analysis is shown in Figure 4. Yellow and black modules indicated a 

strong positive correlation with leukocyte fraction, but brown, pink, blue, and green modules 

were negatively correlated. The relationship between the leukocyte fraction and the cancer DNA 

fraction with modules is inverse. In CIN evaluation as the next clinical feature, four modules 

showed a positive correlation; One module (yellow) negatively correlates with methylation and 

regarding this trait, four modules indicate a positive relationship (Fig. 4). 

Due to the modules-traits relationship assessment, only two modules negatively correlated 

with the tumor purity, and the others had a positive correlation. The module significance was 

calculated for modules with a high correlation coefficient. According to the findings derived 

from the analysis of the module-traits relationship, we selected one module based on the overlap 

of the maximum trait number (brown), which has the highest negative correlation value for LF. 
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black module has the highest positive correlation value in LF (Table 1). In the next step, we 

focused on some genes which will be defined in the hub gene identification part. 

 

 
Figure 3: Gene dendrogram and module colors for TCGA DDLPS 

 

 
Figure 4:  DDLPS module-trait relationship heatmap. The module-trait relationships were demonstrated 

by correlation values and p-values (in parenthesis) with a range of colors. The degree of correlation 

between modules and clinical features is also shown. 
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We separately ranked and selected the quarterly top genes in interested module (brown 

module) based on module membership (MM), intramodular connectivity, and gene significance. 

The common genes of these three vectors were picked as hub genes. All cumulative-

intersectional analyses and data sorting results are based on high negative/positive GS values 

and highly positive scores of MM and K within the brown module. Obviously, hub genes were 

selected with emphasis on trait-specific GS values. According to our findings, 19 hub genes had 

high intersectional values for four traits (Table 2). These genes were classified into four sub-

classes based on their functionality and impact on oncogenesis and cell proliferation pathways. 

Notably, these sub-classes encompass genes with significant roles in microtubule assembly 

(MTOC), mitosis checkpoints dysregulation, DNA repair, and DNA binding proteins (DBP) 

related to chromosome stability. 

 
 

Table 1: Module-trait Correlation and module significance. The interested significant module was shown 

and highlighted in correlation value and module significance 

Trait Module Gene No. Correlation Value Module 

Significance 

Max GS Min GS 

Leukocyte Fraction Black 135 0.82 0.72 0.85 0.54 

Blue 3712 -0.66 0.52 -0.82 -0.026 

Brown 210 -0.73 0.63 -0.77 -0.41 

Green 129 -0.67 0.59 -0.72 -0.45 

Pink 70 -0.64 0.55 -0.7 -0.3 

Yellow 160 0.74 0.67 0.79 0.4 

Tumor Purity Blue 3712 0.44 0.34 0.62 0.26 

Brown 210 0.52 0.45 0.64 0.26 

Green 129 0.49 0.43 0.59 0.26 

Pink 70 0.49 0.42 0.54 0.24 

Yellow 160 -0.35 0.32 -0.45 -0.25 

CIN Brown 210 0.44 0.38 0.56 0.26 

Tumor Size Magenta 33 0.29 - 0.37 0.25 

 
 

Table 2: Selected hub genes in the brown module 

Gene ID Subclass LF-GS Purity-GS Methylation-GS CIN-GS K-

within 

MM 

CKAP2L MTOC -0.711 0.63 0.469 0.481 29.312 0.964 

KIF18B MTOC -0.731 0.661 0.514 0.524 28.188 0.96 

ARHGAP11A Mitosis_checkpoints -0.677 0.597 0.474 0.436 26.508 0.953 

TOP2A DBP -0.693 0.637 0.498 0.453 23.725 0.953 

RAD54L DBP -0.665 0.59 0.473 0.414 22.452 0.943 

EXO1 DNA_repair -0.723 0.594 0.513 0.444 20.789 0.94 

ESPL1 MTOC -0.752 0.7 0.467 0.444 20.609 0.938 

BUB1 MTOC -0.67 0.648 0.495 0.498 21.748 0.934 

MKI67 Mitosis_checkpoints -0.722 0.685 0.489 0.48 20.871 0.926 

KIF15 MTOC -0.702 0.653 0.495 0.406 14.174 0.924 

KIF4A MTOC -0.677 0.616 0.478 0.493 19.816 0.923 

PRC1 MTOC -0.702 0.673 0.464 0.448 20.236 0.923 

SPAG5 MTOC -0.718 0.675 0.472 0.435 17.93 0.918 

TICRR Mitosis_checkpoints -0.746 0.63 0.519 0.44 15.118 0.916 

CEP85 MTOC -0.71 0.646 0.525 0.413 12.815 0.916 

CEP78 MTOC -0.752 0.633 0.595 0.489 14.362 0.913 

ESCO2 DBP -0.665 0.619 0.49 0.406 14.197 0.906 

SMC4 DBP -0.642 0.577 0.463 0.39 10.748 0.88 

SFPQ DBP -0.718 0.665 0.466 0.412 8.442 0.865 

 

All continued traits were dichotomized for survival analysis according to the median values. 

CIN and hyper/hypo methylation had a significant relationship with the overall survival of 

DDLPS patients. The hazard ratio amounts show a higher value for the hypermethylated group 

in favor of the mortality risk (Table 3).  
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Table 3: Univariate survival analysis was considered for DDLSP traits with OS, and PFI as endpoints.  

 Median 

 

            OS                PFI 

 beta HR p-value CI  beta HR p-value CI 

Leukocyte 

Fraction 

0.27 -0.25 0.781 0.595 0.31-1.94  0.46 1.57 0.26 0.7-3.48 

CIN  406 1.14 3.13 0.03 1.14-8.56  0.32 1.38 0.41 0.64-3.00 

Methylation - 1.56 4.8 0.002 1.74-13.08  0.21 1.24 0.634 0.51-2.97 

Purity 0.69 -0.17 0.84 0.721 0.32-2.18  -0.65 0.52 0.13 0.22-1.21 

 

The results of OS and PFI analyses show that DDLPS patients with a higher CIN will have 

a bad prognosis and a higher risk of death. Also, the survival curves plotted through Kaplan-

Meier show poor OS for methylation, and CIN (Supplementary Fig. S4). 

This study's univariate and multivariate analysis detected no modules significantly 

associated with survival endpoints (Supplementary Table S2). Likewise, the single gene 

survival analysis was performed on all genes without module partitioning. In  

Table 4, the results of univariate survival analysis on 19 hub genes were presented. For 

RAD54L, CEP78, and SFPQ, the survival analysis p-value was less than 0.05. It revealed that, 

out of the 19 hub genes, they were prognostic genes. Three prognostic genes have a hazard ratio 

greater than 1. This indicates that SFPQ, CEP78, and RAD54L were poor prognostic genes. 
 

Table 4: Single gene overall survival analysis on hub genes 
No Gene ID p-Value Hazad Ratio HRlower HRupper 

1 CKAP2L 0.10 1.38 0.94 2.03 

2 KIF18B 0.07 1.42 0.96 2.09 

3 ARHGAP11A 0.13 1.34 0.91 1.96 

4 TOP2A 0.06 1.45 0.97 2.15 

5 RAD54L 0.03 1.56 1.05 2.30 

6 EXO1 0.11 1.36 0.93 1.98 

7 ESPL1 0.07 1.42 0.97 2.07 

8 BUB1 0.13 1.32 0.91 1.92 

9 MKI67 0.21 1.29 0.86 1.92 

10 KIF15 0.08 1.40 0.95 2.05 

11 KIF4A 0.24 1.25 0.86 1.83 

12 PRC1 0.15 1.33 0.89 1.98 

13 SPAG5 0.45 1.16 0.78 1.72 

14 TICRR 0.13 1.34 0.91 1.97 

15 CEP85 0.09 1.39 0.94 2.05 

16 CEP78 0.04 1.51 1.01 2.25 

17 ESCO2 0.32 1.20 0.83 1.74 

18 SMC4 0.10 1.39 0.94 2.07 

19 SFPQ 0.04 1.52 1.02 2.26 

 

All significant modules with a high module–trait correlation was analyzed. To find 

biological processes and pathways, we examined the top genes with the highest level of gene 

significance value in each module. The black module genes were significantly enriched for 

immune response-related genes such as T-cell costimulation, and leukocyte migration (Table 5).  

These genes were also found in Antigen processing and presentation, rheumatoid arthritis 

pathogenicity, tuberculosis-related immunity, and cell adhesion molecules (CAMs) related 

pathways. Vice versa, genes in the brown module related to leukocyte fraction were 

independent of the immune response function. These belong to DNA repair, cell division, 

mitotic sister chromatid segregation, sister chromatid cohesion, and DNA replication and these 

achievements can justify the negative correlation value brown module. We used TIMER to do a 

detailed analysis of LF-related genes in the brown module, and its result except for a few genes 
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confirmed our findings (Supplementary Table S3). These genes had positive correlation values 

in brown module which were negative in our data, detailed analyses showed these belong to 

immunosuppressive immune cells such as regulatory T cells and myeloid-derived suppressor 

cell (Supplementary Fig. S5).  
 

Table 5: Functional annotation terms in the relative significance module with leukocyte fraction 
Functional Annotation Term Count FDR Functional Annotation Term Count FDR 

Black module      

GO-Biological Process (BP)           KEGG Pathway 
immune response 9 1.68E-05 Antigen processing and presentation 5 2.43E-04 

T cell costimulation 5 2.61E-04 Rheumatoid arthritis 5 2.43E-04 

Leukocyte migration 4 0.017 Tuberculosis 5 4.30E-04 

GO-Molecular Function (MF)                                                   Cell adhesion molecules (CAMs)           5                    0.053052 

MHC class II receptor activity 4 4.28E-05 Herpes simplex infection5 5 6.70E-04 

MHC class II protein complex 
binding 

4 4.28E-05 REACTOME Pathway   

GO-Cellular Component (CC)                                                        MHC class II antigen presentation     5                    3.40E-05 

Plasma membrane 17 6.87E-04 Translocation of ZAP-70 to 
Immunological synapse 

4 1.81E-05 

An integral component of the 

membrane 

17 0.005 Phosphorylation of CD3 and TCR 

zeta chains 

4 1.81E-05 

                                    

Brown module      

GO-Biological Process (BP)   GO-Cellular Component (CC)   

DNA repair 6 0.003 Cytoplasm 19 0.004 

cell division 6 0.011 Nucleus 19 0.004 
Mitotic sister chromatid 

segregation 

4 0.001 Nucleoplasm 12 0.019 

Sister chromatid cohesion 4 0.024 Centrosome 6 0.008 

DNA replication 4 0.052    

 

 

The gene ontology analyses related to hyper/hypo methylation in the brown module showed 

that these genes were enriched for DNA replication, DNA repair, DNA-protein, and ATP 

binding pathways. Also, genes related to cellular components in that module were highlighted 

for nucleoplasm and nucleus. As provided in Table 6, based on the KEGG pathway database, 

genes would be classified in cell cycle and DNA replication pathways and according to the 

Reactome analyses, DNA replication-related regulatory pathways were found for significant 

genes of this module. 

 
Table 6: Functional annotation terms in brown module with methylation 

Functional Annotation Term Count FDR Functional Annotation Term Count FDR 

GO-Biological Process (BP) GO-Cellular Component (CC) 

DNA replication 12 1.51E-13 Nucleoplasm 19 6.53E-07 

DNA repair 9 3.83E-07 Nucleus 18 0.019 

Strand displacement 4 6.88E-04 KEGG Pathway   

DNA replication initiation 4 9.77E-04 Cell cycle 5 2.13E-04 

DNA synthesis involved in DNA 

repair 
4 0.001 DNA replication 3 0.005 

GO-Molecular Function (MF) REACTOME Pathway   

Protein binding 23 0.003 
Activation of ATR in response 

to replication stress 
5 6.33E-05 

DNA binding 14 8.09E-06 
Assembly of the pre-

replicative complex 
4 1.07E-04 

ATP binding 12 1.00E-04 
Homologous DNA Pairing and 

Strand Exchange 
4 2.42E-04 
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Among six significant modules related to tumor purity, we concentrate on the brown 

module as the most correlated module with tumor purity. As illustrated in Table 7, genes in the 

brown module were enriched cell division, mitotic nuclear division, microtubule-based 

movement, sister chromatid cohesion, and cell proliferation. 
 

Table 7: Functional annotation terms in brown modules with purity 

Functional Annotation Term Count FDR Functional Annotation Term Count FDR 

GO-Biological Process (BP) GO-Cellular Component (CC)   

  Cell division 12 2.27E-10 Nucleus 19 3.07E-04 

Mitotic nuclear division 10 5.12E-09 Cytoplasm 17 0.002 

Microtubule-based movement 6 4.94E-06 Cytosol 14 0.001 

Sister chromatid cohesion 6 1.32E-05 Nucleoplasm 13 0.001 

Cell proliferation 6 0.005 KEGG Pathway   

Mitotic metaphase plate 

congression 
3 0.02 Cell cycle 4 0.002 

GO-Molecular Function (MF)   Oocyte meiosis 3 0.02 

Protein binding 23 0.002 REACTOME Pathway   

Microtubule binding 8 8.07E-07 Kinesins 6 6.81E-06 

Microtubule motor activity 6 2.70E-06 
Resolution of Sister Chromatid 

Cohesion 
6 8.93E-05 

 

 

DISCUSSION 
 

In this study, a system biology approach was applied to investigate the mRNA expression of 

DDLPS patients with the WGCNA framework. In the DDLPS co-expression network, we 

identified modules and genes related to clinical data such as LF, tumor purity, CIN, and 

hyper/hypo methylation. 

5000 of all protein-coding genes were chosen for this study based on the degree of 

connection. eight traits-related modules were constructed and identified using the WGCNA 

framework. The most important genes were sorted based on GS, MM, and K-within in selected 

module. Two modules (brown and black) were selected because they had significant 

relationship with traits such as LF, CIN, Tumor purity and hyper/hypo methylations. 

Here, we reviewed some of the most significant genes in the brown module as selected 

ones. Our findings indicate that around 10 out of the 19 hub genes in this module are crucial for 

microtubule polymerization, as well as for the proteins associated with the microtubule-

organizing center (MTOC) that are involved in the cell cycle and mitosis. The brown module 

showed a negative correlation between certain genes, especially in the MTOC-related subclass, 

and the leukocyte fraction. This correlation is associated with high tumor purity levels, CINs, 

and hyper/hypo methylation. We found this paradoxical feature (negative correlation of LF with 

positive GSs in other traits) can be justified by the focus of these genes on immune cells' 

function and/or their impact on tumor immunology [22, 23]. Nevertheless, various studies have 

demonstrated an inverse relationship between LF and tumor purity, a finding that we 

corroborated in our study, especially within the black and brown modules [24].  

An important factor in treatment is the tumor cell purity index, which can be high when the 

immune system function is low. However, some evidence indicates that a high tumor cell purity 

is associated with the absence of functional immune cells in the tumor. Reducing the tumor cell 

purity index in line with LF increment would be a reliable prognostic factor [25, 26]. LF trait 

definition is related to tumor-infiltrating lymphocytes (TILs) as markers of the immune system's 

function in tumors. TILs usually become residents of the tumor from mass generation or attract 

into the tumor due to the release of inflammatory cytokines from the tumor environment [27]. 
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The efficient anti-tumor properties of TILs are performed through cytotoxic T cells that express 

CD8 and natural killer cells. Due to the tumor burden increase, tumor cells altered immune 

responses to favor immunosuppression, increasing T-reg cells and myeloid-derived suppressor 

cells (MDSCs). The low tumor purity might be related to cancer stem cell frequency and 

regulatory immune cell infiltration, such as M2 and MDSC cells in tumor masses [28]. The 

nature of TILs in the tumor site is more crucial than their frequency. It is imperative to note that 

cells with immunomodulatory properties can work in favor of cancer [29].  

Some of the controversies surrounding tumor purity and LF correlation in WGCNA 

analysis, as well as other immune-related databases like TIMER, can be quite challenging to 

understand. This may be due to the dysfunction of immune cells in cancer, as well as the 

overexpression of inhibitory immune checkpoints in tumor regions, which can alter the immune 

cells' function or attract immunosuppressive cells like MDSC cells from the bone marrow [30]. 

Various studies have shown that these approaches can explain the positive relationship between 

LF and poor prognosis [31]. Overall based on our achievements the LF and tumor cell purity 

opposite relationship is confirmed using Estimation of STromal and Immune cells in MAlignant 

Tumor tissues using Expression data (ESTIMATE) scores in some malignancies, especially in 

melanoma [32].  

In our achievements, the GS score of LF in many genes was negative but in complementary 

analyses by TIMER, we found positive GS that was completely different from our results. We 

need to deep into details to find the reason. The subpopulations-related correlation analysis in 

TIMER showed significant differences; all cells’ correlation with candidate genes was negative, 

but there was a robust positive correlation in some immune cells with immunosuppressive 

function that a high amount of correlation could compensate all negative GSs in other 

subpopulations. The most impressive cell in these analyses was MDSC. We found that all 

results of MDSCs were highly positive, which can hide other gene correlations that can switch 

the total negative GS of LF to positive. The correlation between positive MDSC frequency and 

low overall survival confirms the controversy of TIMER results and supports our accurate 

analysis in predicting poor prognosis for candidate genes [33]. 

In addition to the immune cell-related parameters and tumor cell purity, molecular and 

genetic parameters are also rational in determining the status of genes in personalized medicine 

[34]. Cell proliferation and oncogenes overexpression can be found as a result of structural 

alterations in chromosomes caused by any mutation or epigenetic dysregulation. This is a direct 

consequence of CIN features, which we have confirmed through our research [35, 36]. We 

decided to focus on RAD54L as one of these genes despite the majority of the hub genes having 

great scores in terms of GS and other criteria. This choice was taken regarding the high values 

for the WGCNA-related parameters as well as the large negative score for LF, which was 

entirely positive in the TIMER analysis and was determined to be positive due to MDSC cells. 

The articles' confirmation that higher RAD54L expression can cause MDSCs to be recruited to 

the tumor location, was another factor in the choice of this gene [37]. In the normal state of 

immune cells, this gene helps to regulate hypermutation (and antibody class switching but its 

role is not critical in this area), binds to the DNA molecule, and increases the possibility of 

homologous recombination (HR) by creating a break in the DNA molecule [37, 38]. 

RAD54L is a protein that is functionally classified in the family of DNA-binding proteins, 

which has a special role in DNA repair by HR. This protein helps to repair DNA breaks in 

somatic cells and is necessary for somatic hypermutation in immune cells to create variable 

regions of antibody and T cell receptors. Therefore, according to the estimates, this gene plays 

the same role both in immune cells as a hypermutation indicator and in other proliferating cells 

as a tumor suppressor gene [39]. The overexpression of RAD54L in tumor-surrounding 

lymphatic tissues, especially tertiary lymph nodes, may indicate an adaptive immune response 

against tumor cells, but it can also be justified as a mutation-related gene in cancer cells [40, 

41]. According to our results, the relationship between RAD54L and the lymphocyte fraction 

was negative, which denies the hypermutation indicator role of RAD54L overexpression in the 

tumor.  
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Experimental data on cell lines has revealed complex information about the role of this gene 

in HR in sarcoma. However, its overexpression in various malignancies has been reported to 

have a positive impact on hyper/hypo DNA methylation and DNA repair [42, 43]. RAD54L 

expression level has been altered in many types of malignancies [44, 45]. Considering the 

function of the RAD54L gene, the role of PARP inhibitors in regulating the mRNA level of this 

gene can be highlighted. Studies have shown that using Olaparib can significantly increase 

progression-free survival (PFS) in patients with RAD54L expression level change. These 

findings show the importance of studying the RAD54L in justifying the necessity of Olaparib 

administration in patients with metastatic cancers [46]. RAD54L exhibits elevated expression in 

the majority of tumors and is strongly associated with unfavorable survival outcomes. This gene 

demonstrates robust correlations with the infiltration levels of diverse immune cells, including  

MDSCs and other types of cells such as cancer-associated fibroblasts (CAFs), endothelial cells. 

Additionally, RAD54L shows strong associations with critical factors such as tumor mutation 

burden (TMB), microsatellite instability (MSI), multiple immune checkpoints, and immune cell 

infiltration. Given that RAD54L functions as a DNA-binding protein capable of accelerating 

mutation occurrence, targeted inhibitors specifically directed at its DNA binding are needed 

[47]. 

Understanding the role of the RAD54L gene is pivotal in elucidating the mechanism of 

action of PARP inhibitors. These inhibitors function by trapping poly (ADP-ribose) polymerase 

(PARP) on DNA, creating a physical barrier to the replication machinery. In the context of 

homologous recombination repair (HRR) deficiency in cancer cells, HRR is required to prevent 

replication forks' collapse and subsequent cell death caused by trapped PARP [48]. 

Highlighting the impact of PARP inhibitors on the mRNA level of RAD54L, studies have 

demonstrated that the use of Olaparib significantly enhances progression-free survival (PFS) in 

patients with altered RAD54L expression levels. This suggests a novel approach to targeted 

therapy in sarcoma patients. These findings underscore the importance of investigating RAD54L 

to justify the necessity of administering Olaparib in patients with metastatic cancers [49]. Due to 

a study, the HR score of RAD54L was very high [50]. It showed sensitive properties for PARP 

inhibitors like Olaparib, Nivaparib, and Adavosertib prescription in soft tissue sarcoma patients. 

Their study evaluated all soft tissue malignancies but there was no more information about 

DDLPS. In their study, RAD51 loss of function was more significant in bonemarrow sarcoma 

but gene expression alteration was reported about RAD54L.  

Our achievements confirmed that due to the significant impact of RAD54L in DDLPS 

prognosis. So PARP inhibitor prescription in DDLPS would be suggested in the future [50]. The 

increased expression of this gene compared to other members of the RAD family such as 

RAD51 is a risk factor because this protein, in case of increased expression, causes genome 

instability and increases the mutation load. Although this mechanism is vital in immune cells, in 

other somatic cells, it leads to an increase in the transformation of the nucleus of the cells into a 

cancer cell, and therefore, the increase in its expression as an oncogene has a bad prognosis. 

Studies have shown that the use of PARP inhibitors has a therapeutic role in causing more 

mutations because they can limit the amount of RAD54L binding to the DNA molecule [51]. As 

can be guessed, the very important role of RAD54L in genome instability can also justify CIN 

and affect the epigenomic changes related to DNA methylation [52]. Increasing the expression 

of this gene causes the number of DNA repair forks in the genome to exceed the manageable 

number, and instead of being properly repaired by homologous recombination, the genome 

faces more breaks and becomes cancerous [50]. 

According to the CINSARC signature in the sarcoma study, some important genes related to 

genomic instability can impair normal cell proliferation and cause continuous mutations [53]. 

RAD54L was also the prognostic gene, and its loss of function significantly increased the risk of 

malignancy. This study investigated the effect of LF, tumor purity, CIN, and hyper/hypo 

methylation on OS. Among them, hyper/hypo methylation and CIN hurt the OS of DDLPS 

patients. The poor impact of CIN on OS was approved previously in related studies [54, 55].  
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In conclusion, Different genes are related to LF, purity, CIN, and hyper/hypo methylation in 

significant modules, according to a DDLPS in silico study that utilized WGCNA as a co-

expression network framework.  Notably, MTOC-related genes emerged as having a critical role 

in oncogenesis independent of LF. Based on our findings after TIMER analysis, we can 

confidently assert that there is a strong correlation between LF and DDLPS-related genes. While 

complications in rare genes were observed, particularly concerning immune cell sub-

populations, the total infiltration of immune cells did not show critical differences in various 

analyses. Gene screening, incorporating measurements such as K-within, GS, MM, and OS 

analyses, highlighted RAD54L as a valuable hub gene. Our achievements indicate the 

importance of this gene on the DDLPS overall survival, which was confirmed by the effects of 

DNA repair on DDLPS treatment. Conclusively, the study's findings recommend adding PARP 

inhibitors to the main treatment line of DDLPS chemotherapy guidelines, as this approach holds 

promise for enhancing overall patient survival. However, further experimental and clinical 

investigations are recommended to validate these findings. 
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