Pseudomonas syringae is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit P. syringae growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds,biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs). The most effective way to control the disease is through chemical control. Using copper compounds and antibiotics is a conventional practice to decrease canker disease symptoms. However, due to environmental pollution caused by chemicals and bactericides and the resistance of different pathovars of P. syringae, other methods for bacterial pathogens control are needed. Biological control, using antagonistic bacteria has shown promising results against P. syringae under in vitro conditions. New studies focus on using secondary metabolites from plants to control plant diseases. Studies have shown that essential oils when preserved from degradation and evaporation by nanoparticles like mesoporous silica, can increase their antibacterial activities. Using nanoparticles, especially silver, is a suitable strategy for controlling P. syringae. However, high concentrations of silver nanoparticles are toxic. Bacteriophages and AMPs are recommended as alternatives to control bacterial infections in agriculture, including P. syringae. Combined treatments of phages and secondary metabolites have shown higher efficacy, potentially overcoming resistance. However, bacteriophages and AMPs are expensive and limited. In the end, using secondary metabolites and nanoparticles at low concentrations presents economic benefits and antibacterial activities without phytotoxic properties.
Hwang MS, Morgan RL, Sarkar SF, Wang PW, Guttman DS. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 2005;71:5182-5191.
Yang P, Zhao L, Gao YG, Xia Y. Detection, diagnosis, and preventive management of the bacterial plant pathogen pseudomonas syringae. Plants(Basel) 2023;12:1765.
Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 2013;51:473-498.
Matas IM, Lambertsen L, Rodríguez‐Moreno L, Ramos C. Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (O lea europaea) knots. New Phytol 2012;196:1182-1196.
Arrebola E, Cazorla FM, Perez-García A, De Vicente A. Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins (Basel) 2011;3:1089-1110.
Cha JS, Cooksey DA. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A 1991;88:8915-8919.
Vanneste J, Kay C, Onorato R, Yu J, Cornish DA, Spinelli F, Max S. Recent advances in the characterisation and control of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker on kiwifruit. VII International Symposium on Kiwifruit 913. 2010;443-455.
Wilson M, Backman P. Biological control of plant pathogens. In ‘Handbook of pest management.’(Ed. JR Ruberson) 1999;309–335.
Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M. Occurrence of bacterial canker of kiwifruit in Japan description of symptoms, isolation of the pathogen and screening of bactericides. Jpn J Phytopathol 1989;55:427-436.
Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 2012;12:193.
Mougou I, Boughalleb-M’hamdi N. Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egyptian J Biol Pest Control 2018;28:60.
Daranas N, Roselló G, Cabrefiga J, Donati I, Francés J, Badosa E, Spinelli F, Montesinos E, Bonaterra A. Bonaterra A. Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad‐spectrum activity. Ann Appl Biol 2019;174:92-105.
Cook RJ. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 1993;31:53-80.
Bedini S, Bagnoli G, Sbrana C, Leporini C, Tola E, Dunne C, Filippi C, D'Andrea F, O'Gara F, Nutti MP. Pseudomonads isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis 1999;26:223-236.
Vanneste J, Cornish DA, Yu J, Voyle MD, editors. A microcin produced by a strain of Erwinia herbicola is involved in biological control of fire blight and soft rot caused by Erwinia sp. XXV International Horticultural Congress, Part 3: Culture Techniques with Special Emphasis on Environmental Implications 1998;213:39-46.
García-Latorre C, Rodrigo S, Santamaria O. Biological Control of Pseudomonas syringae in Tomato Using Filtrates and Extracts Produced by Alternaria leptinellae. Horticulturae 2024;10:334.
Burt S. Essential oils: their antibacterial properties and potential applications in foods a review. Int J Food Microbiol 2004;94:223-253.
Cadena MB, Preston GM, Van der Hoorn RA, Townley HE, Thompson IP. Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Ind Crops Prod 2018;122:582-590.
Kim HJ, Chen F, Wang X, Rajapakse NC. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem 2005;53:3696-3701.
Shahryari F, Rabiei Z, Sadighian S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J Plant Pathol 2020;102:469-475.
Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017;9:50.
Ni P, Wang L, Deng B, Jiu S, Ma C, Zhang C,Almeida A, Wang D, Xu W, Wang S. Combined application of bacteriophages and carvacrol in the control of Pseudomonas syringae pv. actinidiae planktonic and biofilm forms. Microorganisms 2020;8:837.
Qian CD, Wu XC, Teng Y, Zhao WP, Li O, Fang SG, Huang ZH, Gao HC. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother 2012;56:1458-1465.
Meyers E, Parker WL, Brown WE, Linnett P, Strominger JL. EM49: a new polypeptide antibiotic active against cell membranes. Ann N Y Acad Sci 1974;235:493-501.
Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Pept Sci 2005;80:717-735.
Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 2007;270:1-11.
Dillard H. Control of fungal and bacterial diseases of processing tomatoes with foliar sprays, 1985. Fungicide and nematicide tests: results-American Phytopathological Society (USA). 1986.
Washington W. Effect of Bordeaux mixture sprays applied after flowering on fruit finish of apricot. Plant Protection Quarterly (Australia). 1991;6:4.
Cooksey DA. Genetics of bactericide resistance in plant pathogenic bacteria. Annu Rev Phytopathol 1990;28:201-219.
Flemming CA, Trevors JT. Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 1989;44:143-158.
Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 2009;106:8344-8349.
Nakajima M, Goto M, Hibi T. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato. J Gen Plant Pathol 2002; 68:68-74.
Cooksey DA. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev 1994;14:381-386.
Asatiani N, Abuladze M, Kartvelishvili T, Osepashvili M, Shengelaya A, Daraselia D, Japaridze D, Khatisashvili G, Varazi T, Holman HY, Sapojnikova N. Copper (II) ion action on soil bacteria. Water Air Soil Pollut 2021;232:1-13.
Iqbal S, Kataria H. Study of heavy metal contamination in Halali Dam water of Vidisha distrcit near Bhopal (MP) India with reference to humam health. Curr World Environ 2006; 1:61-64.
Waksman SA. Streptomycin: background, isolation, properties, and utilization. Science 1953;118:259-266.
Gale E. Thiostrepton and related antibiotics. The Molecular Basis of Antibiotic Action. 1981: 492-500.
Shim HH, Koh YJ, Hur JS, Jung JS, Jung JS. Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae. J Microbiol Biotechnol. 2003; 13:110-118.
Dunne CP, Cronin D, Moënne-Loccoz Y, O'Gara F. Biological control of phytopathogens by phloroglucinol and hydrolytic enzyme producing bacterial inoculants. 1998;21:19-25.
Braun-Kiewnick A, Jacobsen BJ, Sands DC. Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathol 2000;90:368-375.
Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Gua JH. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 2013;15:848-864.
Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, Nicot PC. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci 2015;6:566.
Vanneste J. Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocontrol News and Information 1996;17:67N-78N.
Stockwell V, Johnson K, Sugar D, Loper J. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology 2010;100:1330-1339.
Wilson M, Lindow SE. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 1994;60:4468-4477.
Zhang F, Gao Y, Ren H, Qiu L, Zuo W, Zhou Z, Xie J. [Screening, identification and optimization of fermentation conditions of an antagonistic endophyte to mulberry bacterial blight]. Wei Sheng Wu Xue Bao 2013;53:1285-1294.
Sammer UF, Völksch B, Möllmann U, Schmidtke M, Spiteller P, Spiteller M, Spiteller D. 2-Amino-3-(oxirane-2, 3-dicarboxamido)-propanoyl-valine, an effective peptide antibiotic from the epiphyte Pantoea agglomerans 48b/90. Appl Environ Microbiol 2009;75:7710-7717.
Reis JA, Paula AT, Casarotti SN, Penna ALB. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 2012;4:124-140.
Trias R, Bañeras L, Montesinos E, Badosa E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 2008;11:231-236.
Dunne C, Delancy I, Fenton A, Lohrke S, Moënne-Loccoz Y, O'Gara F. The biotechnology and application of Pseudomonas inoculants for the biocontrol of phytopathogens. International Society for Molecular Plant-Microbe Interactions. Biology of plant-microbe ineractions: proceedings of the 1996;441-448.
Altundağ Ş, Aslim B. Effect of Some Endemic Plants Essential Oils on Bacterials Spot of Tomato. J Plant Pathol 2011:93:37-41.
Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines(Basel) 2016;3:25.
Korkina L, Kostyuk V, De Luca C, Pastore S. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Rev Med Chem 2011;11:823-835.
Zuzarte M, Salgueiro L. Essential oils chemistry. Bioactive essential oils and cancer: Springer. 2015;19-61.
Regnault-Roger C, Hamraoui A, Holeman M, Theron E, Pinel R. Insecticidal effect of essential oils from mediterranean plants uponAcanthoscelides Obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J Chem Ecol 1993;19:1233-1244.
Daferera DJ, Ziogas BN, Polissiou MG. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protec 2003;22:39-44.
Zuo X, Xie H, Dong D, Jiang N, Zhu H, Kang YJ. Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy. Cardiovasc Toxicol 2010;10:208-215.
Poswal MAT, Witbooi W. Antibacterial Properties of Essential Oils on Pseudomonas Syringae pv. syringae and Pseudomonas solanacearum. Pseudomonas Syringae Pathovars and related pathogens: Springer 1997;606-610.
Shabani B, Rezaei R, Charehgani H, Salehi A. Study on antibacterial effect of essential oils of six plant species against Pseudomonas syringae pv. syringae Van Hall 1902 and Pseudomonas fluorescens Migula 1894. J Plant Pathol 2019;101:671-675.
Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 2013;7:8972-8980.
Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010;12:1531-1551.
Slawson RM, Trevors JT, Lee H. Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbiol 1992;158:398-404.
Zhao G, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998;11:27-32.
Gautam N, Salaria N, Thakur K, Kukreja S, Yadav N, Yadav R, Goutam U. Green silver nanoparticles for phytopathogen control. Proc Natl Acad Sci India Sect B Biol Sci 2020;90:439-446.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275:177-182.
Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 2006;63:189-191.
Matsumura Y, Yoshikata K, Kunisaki Si, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 2003;69:4278-4281.
Hatchett DW, White HS. Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 1996;100:9854-9859.
Singh M, Singh S, Prasad S, Gambhir I S. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Biostruct 2008;3:115-122.
Shahryari F, Rabiei Z, Sadighian S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J Plant Pathol 2020;102:469-475.
Li B, Liu B, Shan C, Ibrahim M, Lou Y, Wang Y, Xie G, Li HY, Sun G. Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Manag Sci 2013;69:312-320.
Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JG, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 2004;25:932-936.
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012;2:1-10.
Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 2015;7:4836-4853.
Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SS. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2019;59:123-133.
Garretto A, Miller-Ensminger T, Wolfe AJ, Putonti C. Bacteriophages of the lower urinary tract. Nat Rev Urol 2019;16:422-432.
Ofir G, Sorek R. Contemporary phage biology: from classic models to new insights. Cell 2018;172:1260-1270.
Batinovic S, Wassef F, Knowler SA, Rice DT, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, Sobey CG, Chan HT, Seviour RJ, Petrovski S, Franks AE. Bacteriophages in natural and artificial environments. Pathogens 2019;8:100.
Yuan Y, Gao M. Jumbo bacteriophages: an overview. Front Microbiol 2017;8:403.
Yap ML, Rossmann MG. Structure and function of bacteriophage T4. Future Microbiol 2014;9:1319-1327.
Flaherty J, Jones J, Harbaugh BK, Somodi G, Jackson LE. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortSci 2000;35:882-884.
Smith A, Zamze S, Hignett R. Morphology and hydrolytic activity of A7, a typing phage of Pseudomonas syringae pv. morsprunorum. Microbiol 1994;140:905-913.
Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM . Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 2011;286:4544-4554.
Tyagi C, Marik T, Vágvölgyi C, Kredics L, Ötvös F. Accelerated molecular dynamics applied to the peptaibol folding problem. Int J Mol Sci 2019;20:4268.
Havenga M, Gatsi GM, Halleen F, Spies CF, van der Merwe R, Mostert L. Canker and wood rot pathogens present in young apple trees and propagation material in the Western Cape of South Africa. Plant Dis 2019;103:3129-3141.
Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018;154:94-105.
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415:389-395.
Hegedüs N, Marx F. Antifungal proteins: more than antimicrobials?. Fungal Biol Rev 2013; 26:132-145.
Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial peptides from plants. Pharmacol 2015;8:711-757.
Liu S, Fan L, Sun J, Lao X, Zheng H. Computational resources and tools for antimicrobial peptides. J Pept Sci 2017;23:4-12.
Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2016;44:D1094-D1097.
Sansom MS. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 1991;55:139-235.
Kohn EM, Shirley DJ, Arotsky L, Picciano AM, Ridgway Z, Urban MW, Caputo GA. Role of cationic side chains in the antimicrobial activity of C18G. Molecules 2018;23:329.
Taggar R, Jangra M, Dwivedi A, Bansal K, Patil PB, Bhattacharyya MS, Nandanwar H, Sahoo DK. Bacteriocin isolated from the natural inhabitant of Allium cepa against Staphylococcus aureus. World J Microbiol Biotechnol 2021;37:1-16.
Park SC, Park Y, Hahm KS. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 2011;12:5971-5992.
Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us?. Pept Sci 1998;47:435-450.
Tossi A, Sandri L, Giangaspero A. Amphipathic, α‐helical antimicrobial peptides. Pept Sci 2000; 55:4-30.
Khosravian M, Kazemi Faramarzi F, Mohammad Beigi M, Behbahani M, Mohabatkar H. Predicting antibacterial peptides by the concept of Chou's pseudo-amino acid composition and machine learning methods. Protein Pept Lett 2013;20:180-186.
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution. Science 2020;368:eaau5480.
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020;19:311-332.
Yang D, Zou R, Zhu Y, Liu B, Yao D, Jiang J, Wu J, Tian H. Magainin II modified polydiacetylene micelles for cancer therapy. Nanoscale 2014;6:14772-14783.
Reijmar K, Edwards K, Andersson K, Agmo Hernández V. Characterizing and controlling the loading and release of cationic amphiphilic peptides onto and from PEG-stabilized lipodisks. Langmuir 2016;32:12091-12099.
Inui Kishi RN, Stach-Machado D, Singulani JdL, Dos Santos CT, Fusco-Almeida AM, Cilli EM, Freitas-Astua J, Picchi SC, Machado MA. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One 2018; 13:e0203451.
Rajasekaran K, Stromberg KD, Cary JW, Cleveland TE. Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agric Food Chem 2001;49:2799-2803.
Topman S, Tamir‐Ariel D, Bochnic‐Tamir H, Stern Bauer T, Shafir S, Burdman S, Hayouka Z. Random peptide mixtures as new crop protection agents. Microb Biotechnol 2018;11:1027-1036.
Vavala E, Passariello C, Pepi F, Colone M, Garzoli S, Ragno R, Pirolli A, Stringaro A, Angiolella L. Antibacterial activity of essential oils mixture against PSA. Nat Prod Res 2016;30:412-418.
Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, Bardaji E, Montesinos E. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 2007;28:2276-2285.
Cabrefiga J, Montesinos E. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants. BMC Microbiol 2017;17:39.
Baró A, Mora I, Montesinos L, Montesinos E. Differential susceptibility of Xylella fastidiosa strains to synthetic bactericidal peptides. Phytopathology 2020;110:1018-1026.
Oliveras À, Baró A, Montesinos L, Badosa E, Montesinos E, Feliu L, Planas M. Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens. PLoS One 2018;13:e0201571.
Nadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, Montesinos E, Pla M. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol 2012;12: 159-180.
Danner RL, Joiner K, Rubin M, Patterson W, Johnson N, Ayers K, Parrillo JE. Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide. Antimicrob Agents Chemother 1989;33:1428-1434.
Kirkpatrick P, Raja A, LaBonte J, Lebbos J. Daptomycin. Nat Rev Drug Discov 2003;2: 943-944.
De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V. Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem 2015;58:625-639.
Ravanbakhshian-HabibAbadi, R. , Behbahani, M. and Mohabatkar, H. (2025). Evaluation of several strategies for controlling canker plant disease caused by Pseudomonas syringae. Molecular Biology Research Communications, 14(1), 1-14. doi: 10.22099/mbrc.2024.51122.2034
MLA
Ravanbakhshian-HabibAbadi, R. , , Behbahani, M. , and Mohabatkar, H. . "Evaluation of several strategies for controlling canker plant disease caused by Pseudomonas syringae", Molecular Biology Research Communications, 14, 1, 2025, 1-14. doi: 10.22099/mbrc.2024.51122.2034
HARVARD
Ravanbakhshian-HabibAbadi, R., Behbahani, M., Mohabatkar, H. (2025). 'Evaluation of several strategies for controlling canker plant disease caused by Pseudomonas syringae', Molecular Biology Research Communications, 14(1), pp. 1-14. doi: 10.22099/mbrc.2024.51122.2034
CHICAGO
R. Ravanbakhshian-HabibAbadi , M. Behbahani and H. Mohabatkar, "Evaluation of several strategies for controlling canker plant disease caused by Pseudomonas syringae," Molecular Biology Research Communications, 14 1 (2025): 1-14, doi: 10.22099/mbrc.2024.51122.2034
VANCOUVER
Ravanbakhshian-HabibAbadi, R., Behbahani, M., Mohabatkar, H. Evaluation of several strategies for controlling canker plant disease caused by Pseudomonas syringae. Molecular Biology Research Communications, 2025; 14(1): 1-14. doi: 10.22099/mbrc.2024.51122.2034