Apoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage

Document Type : Original article

Authors

1 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran

Abstract

MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-182.miR-182-5p inhibition in human acute promyelocytic leukemia (APL) cell line was performed by using locked nucleic acid (LNA) and subsequently miR-182-5p and CEBPα expression, apoptosis, necrosis and cell proliferation were measured.After LNA-anti-miR-182-5p transfection to cells at different time points, miR-182-5p down regulation and CEBPα overexpression was revealed in the LNA-anti-miR group compared to the control groups. The cell viability was meaningfully varied between LNA-anti-miR and control groups. Increasing of the apoptotic ratio was linked to miR-182-5p inhibition in the LNA-anti-miR group rather than other groups. Similarly, the necrotic ratio in the LNA-anti-miR group was higher.Our results supported the hypothesis that miR-182-5p inhibition can reduce the cell viability predominantly due to induces apoptosis and necrosis. The present results can apply in translational medicine for investigation of antisense therapy and drug development in leukemia.

Keywords


1. Randolph TR. Acute promyelocytic leukemia (AML-M3)-part 1: Pathophysiology, clinical diagnosis, and differentiation therapy. Clin Lab Sci 2000;13:98-105.
2. Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990;249:1577-1581.
3. Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J, Kanojia D, Yoshida K, Ganesan S, Hattori N. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 2016;30:1672-1681.
4. Spinelli O, Rambaldi A, Rigo F, Zanghì P, D'Agostini E, Amicarelli G, Colotta F, Divona M, Ciardi C, Coco FL. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology. Oncoscience 2015;2:50-58.
5. Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007;7:105-117.
6. Pelosi E, Labbaye C, Testa U. MicroRNAs in normal and malignant myelopoiesis. Leukemia Res 2009;33:1584-1593.
7. Ambros V, Chen X. The regulation of genes and genomes by small RNAs. The Company of Biologists Ltd; 2007. p.1635-1641.
8. Fabbri M, Garzon R, Andreeff M, Kantarjian H, Garcia-Manero G, Calin G. MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 2008;22:1095-1105.
9. Eyholzer M, Schmid S, Wilkens L, Müller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Bri J Cancer 2010;103:275-284.
10. Eyholzer M, Schmid S, Schardt JA, Haefliger S, Mueller BU, Pabst T. Complexity of miR-223 regulation by CEBPA in human AML. Leukemia Res 2010;34:672-676.
11. Johnson PF. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 2005;118:2545-2555.
12. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Na Genet 2001;27:263-270.
13. Drakaki A, Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr Genomics. 2009;10:35-41.
14. Li P, Sheng C, Huang L, Zhang H, Huang L, Cheng Z, Zhu Q. MiR-183/-96/-182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast Cancer Res 2014;16:473.
15. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho K-K, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010;70:367-377.
16. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K, Weinstock DM. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 2011;41:210-220.
17. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009;106:1814-1819.
18. Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, Hernando E, Wei JJ. MiR‐182 overexpression in tumourigenesis of high‐grade serous ovarian carcinoma. J Pathol 2012;228:204-215.
19. Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 2013;19:230-242.
20. Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X, Tang H. MicroRNA‐182 targets cAMP‐responsive element‐binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J 2012;279:1252-1260.
21. Blume C, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A, Benner A. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 2015;29:2015-2023.
22. Fasihi-Ramandi M, Moridnia A, Najafi A, Sharifi M. Inducing cell proliferative prevention in human acute promyelocytic leukemia by miR-182 inhibition through modulation of CASP9 expression. Biomed Pharmacother 2017;89:1152-1158.
23. Pulikkan J, Tenen D, Behre G. C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 2017;31:2279-2285.
24. Sharifi M, Moridnia A. Apoptosis-inducing and antiproliferative effect by inhibition of miR-182-5p through the regulation of CASP9 expression in human breast cancer. Cancer Gene Ther 2017;24:75-82.
25. Fasihi-Ramandi M, Moridnia A, Najafi A, Sharifi M. Inducing apoptosis and decreasing cell proliferation in human acute promyelocytic leukemia through regulation expression of CASP3 by Let-7a-5p blockage. Indian J Hematol Blood Transfus 2018;34:70-77.
26. Freytag SO, Paielli DL, Gilbert JD. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 1994;8:1654-1663.
27. Hendricks-Taylor L, Darlington G. Inhibition of cell proliferation by C/EBPα occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res 1995;23:4726-4733.
28. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res 2012;72:3775-3785.
29. Zhou C, Shen L, Mao L, Wang B, Li Y, Yu H. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun 2015;458:63-69.
30. Li L, Sarver AL, Khatri R, Hajeri PB, Kamenev I, French AJ, Thibodeau SN, Steer CJ, Subramanian S. Sequential expression of miR‐182 and miR‐503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol 2014;234:488-501.
31.Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009;284:23204-23216.
32. Leung WK, He M, Chan AW, Law PT, Wong N. Wnt/β-Catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 2015;362:97-105.
33. Markou A, Lianidou E, Georgoulias V. Metastasis-related miRNAs: a new way to differentiate patients with higher risk? Future Oncol 2015;11:365-367.
34. George G, Mittal RD. MicroRNAs: Potential biomarkers in cancer. Indian J Clin Biochem 2010;25:4-14.
35. Stoffel M, Poy MN, Tuschl TH. MicroRNA and methods for inhibiting same. Google Patents; 2015.
36. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012;4:143-159.
37. Sharifi MSR, Gheisari Y, Kazemi M. Inhibition of MicroRNA miR-92a inhibits cell proliferation in human acute promyelocytic leukemia. . Turk J Haematol 2013;30:157-162.
38. Ørom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 2006;372:137-141.
39. Youk J, Koh Y, Park H, Kim D-Y, Lee C-S, Lee J, Kim HJ, Yoon H-J, Ahn K-S, Jung J-S. Mutation in retinoic X receptor-γ is a possible mechanism of all-trans retinoic acid resistance in acute promyelocytic leukemia (APL): Identifying genetic changes related to drug resistance in APL using whole exome sequencing. Blood 2014;124:2358.