Using two retrotransposon-based marker systems (SRAP and REMAP) for genetic diversity analysis of Moroccan Argan tree

Document Type : Original article

Authors

Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco

Abstract

The Argania is an endemic genetic resource in Morocco holding an important ecological and socio-economical benefit. However, overgrazing and overharvesting lead to a serious downturn in the number of trees. To characterize genetic diversity within and among 24 populations, represented by 240 argan trees, four combinations of SRAP primers and eight combinations of REMAP primers were used. A total of 338 REMAP and 146 SRAP markers were amplified with a polymorphism of 100%. The average polymorphism information content value was 0.20 and 0.17 for SRAP and REMAP markers, respectively. The analysis of molecular variance showed that 26% of the genetic variation was partitioned among populations. The coefficient of gene differentiation was 0.2875 and gene flow was 1.2391. The average parameter diversity was: observed number of alleles (Na)=0.729, effective number of alleles (Ne)=1.131, Shannon’s information index (I)=1.143; Nei’s gene diversity (H)=0.093 and Percentage of Polymorphic Loci=35.68. The STRUCTURE and principal coordinate analysis revealed that the Argania spinosa L. populations were aggregated into 2 genetic groups. To detect outlier, baysecan software was used and 21 were detected (7 under selection, 14 under balancing selection) presenting posterior probability higher than 0.79. The current results can be explored in the design of management programs and to comprehend the adaptation mechanism of Argan tree.

Keywords


1. HCEFLCD. Actualisation du programme d’action national de lutte contre la désertification (PAD LCD). Adaptation au spécifité zonale (Updating of the national action program to combat desertification (PAD LCD). Adaptation to zonal specificity). High Commision for Water, Forests and Desertification Control. 2012.
2. Moukal A. L’arganier, Argania spinosa L. (skeels), usage thérapeutique, cosmétique et alimentaire. Phytotherapie 2004;2:135-141.
3. Nouaim R, Mangin G, Breuil MC, Chaussod R. The argan tree (Argania spinosa) in Morocco: Propagation by seeds, cuttings and in-vitro techniques. Agrofor Syst 2002;54:71-81.
4. Bouzoubaâ Z, Hammouch L. Etude du comportement de l’arganier argania spinosa L. Skeels en verger: Effet des caractères couleur. Act of the first congress: L’Arganier et l’Ecosystème Arganeraie. Agadir 2011:363-367.
5. Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 2000;42:251-269.
6. Kunze R, Saedler H, Lönnig W-E. Plant Transposable Elements. Adv Bot Res 1997;27:331-470.
7. Sanmiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 1998;82:37-44.
8. Riaz A, Li G, Quresh Z, Swati MS, Quiros CF. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed 2001;120:411-415.
9. Singh BD, Singh AK. Marker-assisted plant breeding: principles and practices. Springer, 2015;77-122.
10. Yuying Sh, Xiajun D, Fei W, Binhua C, Zhihong G, Zhen Z. Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Sci Hortic 2011;132:50-58.
11. Talebi M, Kazemi M, Sayed-Tabatabaei BE. Molecular diversity and phylogenetic relationships of Pistacia vera, Pistacia atlantica subsp. mutica and Pistacia khinjuk using SRAP markers. Biochem Syst Ecol 2012;44:179-185.
12. Xie Q, Liu Z, Wang S, Li Z. Genetic diversity and phylogenetic relationships among five endemic Pinus taxa (Pinaceae) of China as revealed by SRAP markers. Biochem Syst Ecol 2015;62:115-120.
13. Kaya E, Yilmaz-Gokdogan E. Using two retrotransposon based marker systems (IRAP and REMAP) for molecular characterization of olive (Olea europaea L.) cultivars. Not Bot Horti Agrobot Cluj-Napoca 2016;44:167-174.
14. El Mousadik A, Petit RJ. Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 1996;5:547-555.
15. Majourhat K, Jabbar Y, Hafidi A, Martínez-Gómez P. Molecular characterization and genetic relationships among most common identified morphotypes of critically endangered rare Moroccan species Argania spinosa (Sapotaceae) using RAPD and SSR markers. Ann For Sci 2008;65:805.
16. Yatrib C, Belkadi B, Pakhrou O, Alami M, Medraoui L, El Mousadik A, Ferradous A, Msanda F, EL Modafar C, Ibn Souda-Kouraichi S, Filali-Maltouf A. Assessment of genetic diversity of argania spinosa L. growing in arid and semi-arid areas of morocco as revealed by Inter-Simple Sequence Repeats. J Agric Sci Technol B 2015;5:336-346.
17. Pakhrou O, Medraoui L, Yatrib C, Alami M, Souda-kouraichi SI, Mousadik AE, Ferradous A, Msanda F, Modafar CE, Filali-maltouf A, Belkadi B. Study of genetic diversity and differentiation of argan tree population (Argania spinosa L.) using AFLP markers. Aust J Crop Sci 2016;10:7680.
18. Pakhrou O, Medraoui L, Yatrib C, Alami M, Filali-maltouf A, Belkadi B. Assessment of genetic diversity and population structure of an endemic Moroccan tree (Argania spinosa L.) based in IRAP and ISSR markers and implications for conservation. Physiol Mol Biol Plants 2017;23:651-661.
19. Keify F, Beiki AH. Exploitation of random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) markers for genetic diversity of saffron collection. J Med Plant Res 2012;6:2761-2768.
20. Roldán-Ruiz I, Dendauw J, Bockstaele EV, Depicker A, Loose MD. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.) Mol Breed 2000;6:125-134.
21. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 1996;2:225-238.
22. Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 1999;98:107-112.
23. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX, Yeh Francis C, Timothy B, J B, Mao Judy X. POPGENE, version 1.31. The User-Friendly Shareware for Population Genetic Analysis Molecular Biology and Biotechnology Centre, University of Alberta, Canada 1999.
24. Peakall R, Smouse PE. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006;6:288-295.
25. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155:945-959.
26. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005;14:2611-2620.
27. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2011;4:359-361.
28. Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 2004;13:969-980.
29. Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 2008;180:977-993.
30. Krauss SL, Sinclair EA, Bussell JD, Hobbs RJ. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol Evol 2013;3:2138-2149.
31. Du X, Zhang Q, Luo Z. Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genet Genomes 2009;5:235.
32. Feng F, Chen M, Zhang D, Sui X, Han S. Application of SRAP in the genetic diversity of Pinus koraiensis of different provenances. Afr J Biotechnol 2009;8:1000-1008.
33. Liu L, Chen W, Zheng X, Li J, Yan D-T, Liu L, Liu X, Wang Y-L. Genetic diversity of Ulmus lamellosa by morphological traits and sequence-related amplified polymorphism (SRAP) markers. Biochem Syst Ecol 2016;66:272-280.
34. Wang J, Wei QY, Lu SJ, Chen YF, Wang YL. Genetic diversity of quercus liaotungensis koidz populations at different altitudes. Sci Res Essays 2014;9:249-256.
35. Amar MH, Biswas MK, Zhang Z, Guo W-W. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci Hortic 2011;128:220-227.
36. Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 2011;106:520-530.
37. Singh S, Nandha PS, Singh J. Transposon-based genetic diversity assessment in wild and cultivated barley. Crop J 2017;5:296-304.
38. Budak H, Shearman RC, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 2004;109:280-288.
39. Da Silva EF, De Sousa SB, Da Silva GF, Sousa NR, do Nascimento Filho FJ, Hanada RE. TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var. sorbilis. Plant Gene 2016;6:43-47.
40. Schulman AH. Molecular markers to assess genetic diversity. Euphytica 2007;158:313-321.
41. Sharma N, Kaur R, Era V. Potential of RAPD and ISSR markers for assessing genetic diversity among Stevia rebaudiana Bertoni accessions. Indian J Biotechnol 2016;15:95-100.
42. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 1999;98:704-711.
43. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 2001;103:455-461.
44. Kremer A, Petit RJ, Ducousso A. Biologie évolutive et diversité génétique des chênes sessile et pédonculé. Rev For Fr 2002;54:111-130.
45. Kimura, M. Evolutionary rate at the molecular level. Nature 1968;217:624-626.
46. Bani-Aameur F, Ferradous A, Dupuis P. Typology of fruits and stones of Argania spinosa (Sapotaceae). For Genet 1999;6:213-219.
47. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA. Phylogeographic studies in plants: problems and prospects. Mol Ecol 1998;7: 465-474.
48. Bajpai PK, Warghat AR, Kant A, Srivastava RB, Stobdan T. Detecting molecular signatures of natural selection in Morus alba populations from trans-Himalaya. J Syst Evol 2014;52: 589-597.
49. Guenni K, Aouadi M, Chatti K, Salhi-Hannachi A. Analysis of genetic diversity of Tunisian pistachio (Pistacia vera L.) using sequence-related amplified polymorphism (SRAP) markers. Genet Mol Res 2016;15:166-175.
50. Wang T, Wang Z, Xia F, Su Y. Local adaptation to temperature and precipitation in naturally fragmented populations of Cephalotaxus oliveri, an endangered conifer endemic to China. Sci Rep 2016;6:1-12.
51. Cullingham CI, Cooke JEK, Coltman DW. Cross-species outlier detection reveals different evolutionary pressures between sister species. New Phytol 2014;204:215-229.
52. Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, Ihara-Ujino T. Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity 2012;109:349-360.