Abundance of antibiotic resistance genes in bacteria and bacteriophages isolated from wastewater in Shiraz

Document Type : Original article

Authors

1 Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

2 Department of Water Science and Engineering, School of Agriculture, Shiraz University, Shiraz, Iran

Abstract

Generally, the high widespread presence of antimicrobial resistance, and the next freeing into aquatic environments which provide a situation for transmission of these genes in water is because of the abuse of the antimicrobial drugs in both medicine and veterinary medicine. In aquatic environment, bacteriophages could have an important role in sharing antimicrobial resistance genes. The purpose of this study was to assess three important antibiotic resistance genes including two β-lactamases (blaTEM, blaSHV) and sul1 gene, referring to resistance to sulfonamides, in both bacteria and phage DNA fractions of wastewater samples, Shiraz, Iran, using polymerase chain reaction. The prevalence of those genes was extremely high and equal to 100% in bacterial DNA, while these rates were lower in phage DNA fractions as 66.66%, 66.66% and 58.33% for blaTEM, blaSHV and sul1, respectively. In conclusion, detection of mentioned genes in bacterial and phage DNA fractions from ambient water is considerable, so the possibility of harbouring and transferring of antibiotic resistance genes by phages needs to be explored in the future. Also, available data is a reputable endorsement that wastewater is a hotspot for these kinds of genes to spread in the environment. Based on our knowledge, this is the first report of blaTEM and bla SHV and sul1 genes in bacterial and phage DNA fractions insulated from urban wastewater and environment in Iran.

Keywords


1. Cangelosi GA, Freitag NE, Buckley M. From outside to inside: environmental microorganisms as human pathogens. Washington (DC): American Soci for Microbiol 2004. https://www.ncbi.nlm.nih.gov/books/NBK560445/
2. Aminov RI. The role of antibiotics and antibiotic resistance in nature. Env Mic 2009;11: 2970-2988.
3. Balcazar JL. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog 2014;10:e1004219.
4. Brabban AD, Hite E, Callaway TR. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis 2005;2:287-303.
5. Devarajan N, Laffite A, Graham ND, Meijer M, Prabakar K, Mubedi JI, Elongo V,  Mpiana PT, Iblings BW, Wildi W, Pote J. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ Sci Technol 2015;49:6528-6537.
6. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 2018;9:2928.
7. Quiros P, Colomer-Lluch M, Martinez-Castillo A, Miro E, Argente M, Jofre J, Navarro F, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob Agents Chemother 2014;58:606-609.
8. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 2013;447:345-360.
9. Everage TJ, Boopathy R, Nathaniel R, LaFleur G, Doucet J. A survey of antibiotic-resistant bacteria in a sewage treatment plant in Thibodaux, Louisiana, USA. Inter Biodeter Biodegrad 2014;95:2-10.
10. Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014;38: 761-778.
11. Garcillan-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev 2011;35:936-956.
12. Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 2011;35:820-855.
13. Zhang Y, Marrs CF, Simon C, Xi C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ 2009;407:3702-3706.
14. Banks DJ, Porcella SF, Barbian KD, Beres SB, Philips LE, Voyich JM, Musser JM. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis 2004;190:727-738.
15. Muniesa M, Colomer-Lluch M, Jofre J. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes. Future Microbiol 2013;8:739-751.
16. Muniesa M, Colomer-Lluch M, Jofre J. Could bacteriophages transfer antibiotic resistance genes  from environmental bacteria to human-body associated bacterial populations? Mob Gent Elements 2013;3:e25847.
17. Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E. Antibiotic resistance genes identified in wastewater treatment plant systems-A review. Sci Total Environ 2019;697:134023.
18. Zhang A, Call DR, Besser TE, Liu J, Jones L, Jones L, Wang H, Davis MA. beta-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. Water Res 2019;161:335-340.
19. Muniesa M, Garcia A, Miro E, Mirelis B, Prats G, Jofre J, Navarro F. Bacteriophages and diffusion of beta-lactamase genes. Emerg Infect Dis 2004;10:1134-1137.
20. Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR. Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 2010; 76:3753-3757.
21. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother 2009;64:3-10.
22. Barlow M, Reik RA, Jacobs SD, Medina M, Meyer MP, McGowan Jr JE, Tenover FC. High rate of mobilization for blaCTX-Ms. Emer Infec Dis 2008;14:423-428.
23. Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 2011;6:e17549.
24. Colomer-Lluch M, Calero-Caceres W, Jebri S, Hmaied F, Muniesa M, Jofre J. Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. Environ Int 2014;73:167-175.
25. Colomer-Lluch M, Imamovic L, Jofre J, Muniesa M. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Chemother 2011;55:4908-4911.
26. Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 2014; 22:36-41.
27. Mohan Raj JR, Vittal R, Huilgol P, Bhat U, Karunasagar I. T4-like Escherichia coli phages from the environment carry blaCTX-M. Lett Appl Microbiol 2018;67:9-14.
28. Singer AC, Shaw H, Rhodes V, Hart A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front Microbiol 2016;7:1728.
29. Calero-Cáceres W, Ye M, Balcázar JL. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends in Microbiol 2019;27:570-577.  
30. Calero-Caceres W, Muniesa M. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res 2016;95:11-18.
31. Debroas D, Siguret C. Viruses as key reservoirs of antibiotic resistance genes in the environment. The ISME Journal 2019;13:2856-2867.
32. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study.  Lancet Infec Dis 2010;10:597-602.
33. Lachmayr KL, Kerkhof LJ, Dirienzo AG, Cavanaugh CM, Ford TE. Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream. Appl Environ Microbiol 2009;75:203-211.
34. Larranaga O, Brown-Jaque M, Quiros P, Gomez-Gomez C, Blanch AR, Rodriguez-Rubio L, Muniesa M. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environ Int 2018;115:133-141.
35. Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 2012;46:11541-11549.
36. Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Medigue C, Blanco J, Clermont O, Denamur E, Branger C. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum beta-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 2014;58:6550-6557.
37. Calero-Caceres W, Melgarejo A, Colomer-Lluch M, Stoll C, Lucena F, Jofre J, Muniesa M. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environ Sci Technol 2014;48:7602-7611.
38. Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family-A review. Front Microbiol 2017;8:1108.
39. Colavecchio A, Jeukens J, Freschi L, Edmond Rheault JG, Kukavica-Ibrulj I, Levesque RC, Lejeune J, Goodridge L. Complete genome sequences of two phage-like plasmids carrying the CTX-M-15 extended-spectrum beta-Lactamase gene. Genome Announc 2017;5:e00102-e00117.
40. Colombo S, Arioli S, Guglielmetti S, Lunelli F, Mora D. Virome-associated antibiotic-resistance genes in an experimental aquaculture facility. FEMS Microbiol Ecol 2016;92:fiw003.
41. Subirats J, Sanchez-Melsio A, Borrego CM, Balcazar JL, Simonet P. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Int J Antimicrob Agents 2016;48:163-167.
42. Diaz MA, Hernandez-Bello JR, Rodriguez-Bano J, Martinez-Martinez L, Calvo J, Blanco J, Pascual A. Spanish Group for Nosocomial Infections (GEIH). Diversity of Escherichia coli strains producing extended-spectrum beta-lactamases in Spain: second nationwide study. J Clin Microbiol 2010;48:2840-2845.
43. Patterson JE. Extended-spectrum beta-lactamases. Semin Respir Crit Care Med 2003;24:79-88.
44. Rodríguez-Baño J, Alcalá JC, Cisneros JM, Grill F, Oliver A, Horcajada JP,Tortola T, Mirelis B, Navarro G, Cuenca M, Esteve M, Pana C, Lianos AC, Canton R, Pascual A. Community infections caused by extended-spectrum β-lactamase–producing Escherichia coli. Arch Intern Med 2008;168:1897-1902.
45. Brown-Jaque M, Calero-Caceres W, Espinal P, Rodriguez-Navarro J, Miro E, Gonzalez-Lopez JJ, Cornejo T, Hurtado JC, Navarro F, Muniesa M. Antibiotic resistance genes in phage particles isolated from human faeces and induced from clinical bacterial isolates. Int J Antimicrob Agents 2018;51:434-442.
46. Calero-Caceres W, Mendez J, Martin-Diaz J, Muniesa, M. The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environ Pollut 2017;223:384-394.
47. Yang Y, Shi W, Lu SY, Liu J, Liang H, Yang Y, Duan G, Li Y, Wang H, Zhang A. Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China. Sci Total Environ 2018;626:835-841.
48. Wang M, Liu P, Zhou Q, Tao W, Sun Y, Zeng Z. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. Environ Pollut 2018;238:291-298.
49. Lucena F, Duran AE, Moron A, Calderon E, Campos C, Gantzer C, Skraber S, Jofre J. Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. J Appl Microbiol 2004;97:1069-1076.
50. Marín I, Goñi P, Lasheras A, Ormad M. Efficiency of a Spanish wastewater treatment plant for removal potentially pathogens: Characterization of bacteria and protozoa along water and sludge treatment lines. Ecological Engineering 2015;74:28-32.
51. Guardabassi L, Lo Fo Wong DM., Dalsgaard A. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Res 2002;36:1955-1964.
52. Huang JJ, Hu HY, Lu SQ, Li Y, Tang F, Lu Y, Wei B. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China. Environ Int 2012;42:31-36.
53. LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol 2011;45:9543-9549.
54. Czekalski N, Berthold T, Caucci S, Egli A, Burgmann H. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake geneva, Switzerland. Front Microbiol 2012;3:106.
55. Quach-Cu J, Herrera-Lynch B, Marciniak C, Adams S, Simmerman A, Reinke R. The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (ARG) concentrations in solid and dissolved wastewater fractions. Water 2018;10:37.
56. Allue-Guardia A, Jofre J, Muniesa M. Stability and infectivity of cytolethal distending toxin type V gene-carrying bacteriophages in a water mesocosm and under different inactivation conditions. Appl Environ Microbiol 2012;78:5818-5823.
57. Duran AE, Muniesa M, Mendez X, Valero F, Lucena F, Jofre J. Removal and inactivation of indicator bacteriophages in fresh waters. J Appl Microbiol 2002; 92:338-347.
58. Anand T, Bera BC, Vaid RK, Barua S, Riyesh T, Virmani N, Hussain M, Singh RK, Tripathi BN. Abundance of antibiotic resistance genes in environmental bacteriophages. J  Gen Virol 2016;97:3458-3466.
59. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 2015;49:6772-6782.
60. Balcázar JL. Implications of bacteriophages on the acquisition and spread of antibiotic resistance in the environment. Int Microbiol 2020;475-479.
61. Newire E, Ahmed SF, House B, Valiente E, Pimentel G. Detection of new SHV-12, SHV-5 and SHV-2a variants of extended spectrum Beta-lactamase in Klebsiella pneumoniae in Egypt. Ann Clin Microbiol Antimicrobiol 2013;12:16. 
62. Hur J, Kim JH, Park JH, Lee YJ, Lee JH. Molecular and virulence characteristics of multi-drug resistant Salmonella enteritidis strains isolated from poultry. Vet J 2011;189:306-311.