Computational analysis of Ayurvedic herbs to explore their potential role as anti-cervical cancer agents

Document Type : Original article

Authors

1 Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, India

2 Department of Biotechnology, Panjab University, Chandigarh, India

3 Department of Zoology, RKSD College, Kaithal, Haryana, India

Abstract

Cervical cancer is one of the common types of cancer in women. Treatment regimens include use of chemotherapy but it leads to certain side effects thereby creating a need for safer therapeutic options. Ayurveda has a great potential to provide better treatment strategies. In this study, computational approaches have been employed to investigate the molecular mechanism of anti-cervical cancer Ayurvedic herbs. Initially, Ayurvedic plants possessing anti-cervical cancer activities were obtained from literature. Bioactive compounds present in such plants were evaluated for drug-likeliness, biological functions and associations with cancer-related pathways. This resulted in the most promising drug-like bioactive compounds which were found to target cancer pathways like microRNA and proteoglycans, Human papillomavirus infection. Anti-cervical cancer activity possessing herbs derived from the study include Camellia sinensis, Equisetum arvense, Rosmarinus officinalis. Major bioactive compounds extracted from the enlisted herbs that contribute in promoting anti-cervical cancer effects include allicin, apigenin, and mataresinol. Overall, our study has provided insights into the scientific mechanism behind anti-cervical cancer activities of the indigenous herbs of Ayurveda. In addition, this study has also highlighted key bioactive compounds which have a potential in targeting cancer related pathways and thus can further be utilized to devise better therapeutics to cure cervical cancer.

Keywords


  1. Wu M, Han Y, Gong X, Wan K, Liu Y, Zhou Y, Zhang L, Tang G, Fang H, Chen B, Yang F, Zhao L, Tang G, Fang H, Chen B, Yang F, Zhao Q, Wang G, Zhanghuang C, Zhang Y. Novel insight of CircRNAs in cervical cancer: Potential biomarkers and therapeutic target. Front Med (Lausanne) 2022;9:759928.
  2. Pankaj S, Nazneen S, Kumari S, Kumari A, Kumari A, Kumari J, Choudhary V, Kumar S. Comparison of conventional Pap smear and liquid-based cytology: A study of cervical cancer screening at a tertiary care center in Bihar. Indian J Cancer 2018;55:80-83.
  3. Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022;27:49.
  4. Sharma S, Deep A, Sharma AK. Current treatment for cervical cancer: an update. Anticancer Agents Med Chem 2020;20:1768-1779.
  5. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 2020;8:e191-e203.
  6. Zivarpour P, Nikkhah E, Maleki Dana P, Asemi Z, Hallajzadeh J. Molecular and biological functions of gingerol as a natural effective therapeutic drug for cervical cancer. J Ovarian Res 2021;14:43.
  7. Stumbar SE, Stevens M, Feld Z. Cervical cancer and its precursors: a preventative approach to screening, diagnosis, and management. Prim Care 2019;46:117-134.
  8. Salaria D, Rolta R, Mehta J, Awofisayo O, Fadare OA, Kaur B, Kumar B, Araujo da Costa R, Chandel SR, Kaushik N, Choi EH, Kaushik NK. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An in silico approach. PLoS One 2022;17:e0265420.
  9. Mishra G, Pimple SA, Shastri S. An overview of prevention and early detection of cervical cancers. Indian J Med Paediatr Oncol 2011;32:125-132.
  10. Kunal G, Karale S, Warad V. Anti diarrhoeal activity of a polyherbal formulation in various animals models diarrhoea. Int Res J Pharm 2012;3:289-290.
  11. Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S, Kar A, Chanda J, Biswas S, Ahmmed SM, Katiyar CK. Development of Ayurveda-Tradition to trend. J Ethnopharmacol  2017;197:10-24.
  12. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RPB, Aparna SR, Mangalapandi P, Samal A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci Rep 2018;8:4329.
  13. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem substance and compound databases. Nucleic Acids Res 2015;44(Database issue):D1202-D1213.
  14. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B,Overington JP. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012;40(Database issue):D1100–D1107.
  15. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014;32:40-51.
  16. Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019;9:10565.
  17. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule Pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015;58:4066-4072.
  18. Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS. ClassyFire: autompated chemical classification with a comprehensive, computable taxonomy. J Cheminform 2016; 8:61.
  19. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(Database):D198-D201.
  20. Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 2008;36(Database issue):D684-D688.
  21. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014;42: W32-W38.
  22. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28:27-30.
  23. Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob H. ReactomeGSA - efficient multi-omics comparative pathway analysis. Mol Cell Proteomics 2020;19:2115-2125.
  24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504.
  25. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46:D1074-D1082.
  26. Modzelewska A, Sur S, Kumar SK, Khan SR. Sesquiterpenes: Natural products that decrease cancer growth. Curr Med Chem Anticancer Agents 2005;5:477-499.
  27. Silva GDSE, Marques JNJ, Linhares EPM, Bonora CM, Costa ÉT, Saraiva MF. Review of anticancer activity of monoterpenoids: Geraniol, nerol, geranial and neral. Chem Biol Interact 2022;362:109994.
  28. Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res 2020;34:1812-1828.
  29. Zhang E, Zhang Y, Fan Z, Cheng L, Han S, Che H. Apigenin inhibits histamine-induced cervical cancer tumor growth by regulating estrogen receptor expression. Molecules 2020; 25:1960.
  30. Yifan M, Rui X, Yuan L, Feiyun J. Allicin inhibits the biological activities of cervical cancer cells by suppressing circEIF4G2. Food Sci Nutr 2024;12:2523-2536.
  31. Jang WY, Kim MY, Cho JY. Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int J Mol Sci 2022;23:15482.
  32. Lee B, Kim KH, Jung HJ, Kwon HJ. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2012;421:76-80.
  33. Al-Menhali A, Al-Rumaihi A, Al-Mohammed H, Al-Mazrooey H, Al-Shamlan M, AlJassim M, Al-Korbi N, Eid AH. Thymus vulgaris (Thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells. J Med Food 2015;18:54-59.
  34. Rajput A, San Martin ID, Rose R, Beko A, LeVea C, Sharratt E, Mazurchuk R, Hoffman RM, Brattain MG, Wang J. Characterization of HCT116 human colon cancer cells in an orthotopic model. J Surg Res 2008;147:276-281.
  35. Tai J, Cheung S, Wu M, Hasman D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012;19:436-443.
  36. Butt MS, Naz A, Sultan MT, Qayyum MMN. Anti-oncogenic perspectives of spices/herbs: A comprehensive review. EXCLI J 2013;12:1043-1065.
  37. Chakraborty AJ, Uddin TM, Matin Zidan BMR, Mitra S, Das R, Nainu F, Dhama K, Roy A, Hossain MdJ, Khusro A, Emran TB. Allium cepa: A treasure of bioactive phytochemicals with prospective health benefits. Evid Based Complement Alternat Med 2022;2022: 4586318.
  38. Shareef M, Ashraf MA, Sarfraz M. Natural cures for breast cancer treatment. Saudi Pharm J 2016;24:233-240.
  39. Lee CY, Hsin MC, Chen PN, Lin CW, Wang PH, Yang SF, Hsiao YH. Arctiin Inhibits Cervical Cancer Cell Migration and Invasion through Suppression of S100A4 Expression via PI3K/Akt Pathway. Pharmaceutics 2022;14:365.
  40. Butler LM, Wu AH. Green and black tea in relation to gynecologic cancers. Mol Nutr Food Res 2011;55:931-940.
  41. Makia R, Al-Sammarrae K, Al-Halbosiy M, Al-Mashhadani M. In Vitro Cytotoxic Activity of Total Flavonoid from Equisetum Arvense Extract. Rep Biochem Mol Biol 2022;11:487-492.
  42. Rasi Bonab F, Baghbanzadeh A, Ghaseminia M, Bolandi N, Mokhtarzadeh A, Amini M, Dadashzadeh K, HajiAsgharzadeh K, Baradaran B, Bannazadeh Baghi H. Molecular pathways in the development of HPV-induced cervical cancer. EXCLI J 2021;20:320-337.
  43. Xiang S, Sun Z, He Q, Yan F, Wang Y, Zhang J. Aspirin inhibits ErbB2 to induce apoptosis in cervical cancer cells. Med Oncol 2010;27:379-387.
  44. Zhao R, Song J, Jin Y, Liu Y. Long noncoding RNA HOXC-AS3 enhances the progression of cervical cancer via activating ErbB signaling pathway. J Mol Histol 2021;52:991-1006.