1. Colonna S, Gaggero N, Richelmi C, Pasta P. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol 1999;17:163-168.
2. Hamid M, Khalil ur R. Potential applications of peroxidases. Food Chem 2009;115:1177-1186.
3. Azevedo AM, Martins VC, Prazeres DMF, Vojinovic V, Cabral JMS, Fonseca LP. Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 2003;9:199-247.
4. Raghu P, Reddy TM, Reddaiah K, Jaidev L, Narasimha G. A novel electrochemical biosensor based on horseradish peroxidase immobilized on Ag-nanoparticles/poly (l-arginine) modified carbon paste electrode toward the determination of pyrogallol/hydroquinone. Enzyme Microb Technol 2013;52:377-385.
5. Liu X, Luo L, Ding Y, Xu Y. Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. Analyst 2011;136:696-701.
6. Kafi A, Wu G, Chen A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 2008;24:566-571.
7. Ugarova NN, Rozhkova GD, Berezin IV. Chemical modification of the ε-amino groups of lysine residues in horseradish peroxidase and its effect on the catalytic properties and thermostability of the enzyme. Biochim Biophys Acta 1979;570:31-42.
8. Miland E, Smyth MR, Ó'Fágáin C. Increased thermal and solvent tolerance of acetylated horseradish peroxidase. Enzyme Microb Technol 1996;19:63-67.
9. Miland E, Smyth MR, Ó'Fágáin C. Modification of horseradish peroxidase with bifunctional N-hydroxysuccinimide esters: effects on molecular stability. Enzyme Microb Technol 1996;19:242-249.
10. O’Brien AM, Ó'Fágáin C, Nielsen PF, Welinder KG. Location of crosslinks in chemically stabilized horseradish peroxidase. Implications for design of crosslinks. Biotechnol Bioeng 2001;76:277-284.
11. O'Brien AM, Smith AT, Ó'Fágáin C. Effects of phthalic anhydride modification on horseradish peroxidase stability and activity. Biotechnol Bioeng 2003;81:233-240.
12. Song HY, Yao JH, Liu JZ, Zhou SJ, Xiong YH, Ji LN. Effects of phthalic anhydride modification on horseradish peroxidase stability and structure. Enzyme Microb Technol 2005;36:605-611.
13. Liu JZ, Wang TL, Huang MT, Song HY, Weng LP, Ji LN. Increased thermal and organic solvent tolerance of modified horseradish peroxidase. Protein Eng Des Sel 2006;19:169-173.
14. Ryan BJ, Ó'Fágáin C. Effects of mutations in the helix G region of horseradish peroxidase. Biochimie 2008;90:1414–1421.
15. Mogharrab N, Ghourchian H. Anthraquinone 2-carboxylic acid as an electron shuttling mediator and attached electron relay for horseradish peroxidase. Electrochem Commun 2005;7:466-471.
16. Mogharrab N, Ghourchian H, Amininasab M. Structural stabilization and functional improvement of horseradish peroxidase upon modification of accessible lysines: experiments and simulation. Biophys J 2007;92:1192-1203.
17. Urrutigoity M, Baboulene M, Lattes A. Use of pyrocarbonates for chemical modification of histidine residues of horseradish peroxidase. Bioorg Chem 1991;19:66-76.
18. O’Brien AM. Chemical modification and characterization of horseradish peroxidase and its derivatives for environmental applications. Ph.D. Thesis. Dublin City University: Ireland 1997.
19. Khajeh K, Naderi-Manesh H, Ranjbar B, Moosavi-Movahedi AA, Nemat-Gorgani M. Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enzyme Microb Technol 2001;28:543-549.
20. Moreno JM, Ó'Fágáin C. Activity and stability of native and modified alanine aminotransferase in cosolvent systems and denaturants. J Mol Catal B Enzym 1997;2:271-279.
21. Elsner C, Grahn S, Bauer S, Ullmann D, Kurth T, Jakubke HD. Effects of chemical modification of lysine residues in trypsin. J Mol Catal B: Enzym 2000;8:193-200.
22. Szabó A, Kotormán M, Laczkó I, Simon LM. Improved stability and catalytic activity of chemically modified papain in aqueous organic solvents. Process Biochem 2009;44:199-204.
23. Xue Y, Wu CY, Branford-White CJ, Ning X, Nie HL, Zhu LM. Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J Mol Catal B Enzym 2010;63:188-193.
24. Welinder KG. Amino acid sequence studies of horseradish peroxidase. Eur J Biochem 1979;95:483-502.
25. Yang BY, Gray JSS, Montgomery R. The glycans of horseradish peroxidase. Carbohydr Res 1996;287:203-212.
26. Navapour L, Mogharrab N, Amininasab M. How modification of accessible lysines to phenylalanine modulates the structural and functional properties of horseradish peroxidase: a simulation study. PLoS One 2014;9:e109062.
27. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL. Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nat Struct Biol 1997;4:1032-1038.
28. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem 2005;26:1701-1718.
29. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004;25:1656-1676.
30. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007;126:014101.
31. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular-dynamics with coupling to an external bath. J Chem Phys 1984;81:3684-3690.
32. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 1981;52:7182-7190.
33. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997;18:1463-1472.
34. Darden T, York D, Pedersen L. Particle mesh Ewald: an N Log (N) method for Ewald sums in large systems. J Chem Phys 1993;98:1463-1472.
35. Yin S, Ding F, Dokholyan NV. Eris: an automated estimator of protein stability. Nat Meth 2007;4:466-467.
36. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
37. Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 2004;65:249-259.
38. Khajehpour M, Rietveld I, Vinogradov S, Prabhu NV, Sharp KA, Vanderkooi JM. Accessibility of oxygen with respect to the heme pocket in horseradish peroxidase. Proteins Struct Funct Genet 2003;53:656-666.
39. Poulos TL, Kraut J. The stereochemistry of peroxidase catalysis. J Biol Chem 1980;255:8199-8205.
40. Savenkova MI, Newmyer SL, Ortiz de Montellano PR. Rescue of His-42→Ala horseradish peroxidase by a Phe-41→His mutation: engineering of a surrogate catalytic histidine. J Biol Chem 1996;271:24598-24603.
41. Gajhede M. Plant peroxidases: substrate complexes with mechanistic implications. Biochem Soc Trans 2001;29:91-99.
42. Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by x-ray crystallography. Biochemistry 1998;37:8054-8060.
43. Ryan O, Smyth MR, Ó'Fágáin C. Thermostabilized chemical derivatives of horseradish peroxidease. Enzyme Microb Technol 1994;16:501-505.
44. Liu JZ, Song HY, Weng LP, Ji LN. Increased thermostability and phenol removal efficiency by chemical modified horseradish peroxidase. J Mol Catal B: Enzym 2002;18:225-232.
45. Hassani L. Chemical modification of horseradish peroxidase with carboxylic anhydrides: effect of negative charge and hydrophilicity of the modifiers on thermal stability. J Mol Catal B: Enzym 2012;80:15-19.
46. Ryan BJ, Ó'Fágáin C. Effects of single mutations on the stability of horseradish peroxidase to hydrogen peroxide. Biochimie 2007;89:1029-1032.
47. Ryan B. Site directed mutagenesis studies of horseradish peroxidase. Ph.D. Thesis. Dublin City University:Ireland 2006.
48. Howes BD, Feis A, Raimondi L, Indiani C, Smulevich G. The critical role of the proximal calcium ion in the structural properties of horseradish peroxidase. J Biol Chem 2001;276:40704-40711.