Influence of heparin molecular size on the induction of C-terminal unfolding in β2-microglobulin

Document Type : Short communication

Authors

1 Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan

2 Suiyukai Clinic, Kashihara, Nara, Japan

3 Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan

4 Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan

Abstract

Dialysis-related amyloidosis (DRA) is characterized by accumulation of amyloid β2-microglobulin (β2m) in the interstitial matrix. Matrix substances such as heparin have reportedly been strongly implicated in the pathogenesis of dialysis-related amyloidosis. In clinical setting of hemodialysis, two types of heparin, i.e., high and low molecular heparin (H.M.H. and L.M.H.) have been routinely used. Still commonly used is H.M.H., followed by L.M.H. preparations with distinct advantages. Here, we studied that the interaction of native and two amyloidogenic β2m variants: ΔN6β2m and D76N β2m with H.M.H. and L.M.H. We also investigated whether heparin could induce β2m to have an amyloidogenic conformation.Biolayer interferometry revealed that ΔN6β2m had a strong reaction and D76N β2m had a moderate reaction with H.M.H.. Furthermore, H.M.H. induced the C-terminal unfolding in a native β2m. By contrast, L.M.H. showed no reaction even with ΔN6β2m.This study showed firstly a direct binding of β2m with H.M.H.. H.M.H. would provoked a C-terminal unfolding of β2m, which indicated production of an amyloidogenic intermediate, i.e., β2m92-99. In addition, our findings also suggest that L.M.H. may provide beneficial effects against the development of the DRA.

Keywords


1. Odell RA, Slowwiaczek P, Moran JE, Schindhelm K. Beta2-microglobulin kinetics in end-stage renal failure. Kidney Int 1991;39:909-919.
2. Floege J, Schäffer J, Koch KM. Scintigraphic methods to detect beta2-microglobulin associated amyloidosis (A beta2-microglobulin amyloidosis). Nephrol Dial Transplant 2001;16:12-16.
3. Garbar C, Jadoul M, Noël H, van Ypersele de Strihou C. Histological characteristics of sternoclavicular beta2-microglobulin amyloidosis and clues for its histogenesis. Kidney Int 1999;55: 1983-1990.
4. Inoue S, Kuroiwa M, Ohashi K, Hara M, Kisilevsky R. Ultrastructural organization of hemodialysis-associated beta2-microglobulin amyloid fibrils. Kidney Int 1997;52:1543-1549.
5. Jadoul M, Garbar C, Noël H, Sennesael J, Vanholder R, Bernaert P, Rorive G, Hanique G, van Ypersele de Strihou C. Histological prevalence of beta2-microglobulin amyloidosis in hemodialysis: a prospective post-mortem study. Kidney Int 1997;51:1928-1932.
6. Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for hemodialysis in patients with end-stage renal failure: a meta-analysis of randomized trials. J Am Soc Nephrol 2004;15:3192-3206.
7. Gejyo F, Odani S, Yamada T, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y. β2-microglobulin: A new form of amyloid protein associated with chronic hemodialysis. Kidney Int 1986;30:385-390.
8. Stoppini M, Bellotti V, Mangione P, Merlini G, Ferri G. Use of anti-(beta2 microglobulin) mAb to study formation of amyloid fibrils. Eur J Biochem 1997; 249:21-26.
9. Motomiya Y, Ando Y, Haraoka K, Sun X, Morita H, Amano I, Uchimura T, Maruyama I. Studies on unfolded beta2-microglobulin at C-terminal in dialysis-related amyloidosis. Kidney Int 2005;67:314-320.
10. Motomiya Y, Higashimoto Y, Uji Y, Suenaga G, Ando Y. C-terminal unfolding of an amyloidogenic β2-microglobulin fragment: ΔN6β2-microglobulin. Amyloid 2015; 22:54-60.
11. Valleix S, Gillmore JD, Bridoux F, Mangione PP, Dogan A, Nedelec B, Boimard M, Touchard G, Goujon JM, Lacombe C, Lozeron P, Adams D, Lacroix C, Maisonobe T, Planté-Bordeneuve V, Vrana JA, Theis JD, Giorgetti S, Porcari R, Ricagno S, Bolognesi M, Stoppini M, Delpech M, Pepys MB, Hawkins PN, Bellotti V. Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. N Engl J Med 2012;366:2276-2283.
12. Concepcion J1, Witte K, Wartchow C, Choo S, Yao D, Persson H, Wei J, Li P, Heidecker B, Ma W, Varma R, Zhao LS, Perillat D, Carricato G, Recknor M, Du K, Ho H, Ellis T, Gamez J, Howes M, Phi-Wilson J, Lockard S, Zuk R, Tan H. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 2009;12:791-800.
13. Ohashi K, Kisilevsky R, Yanagishita M. Affinity binding of glycosaminoglycans with beta(2)-microglobulin. Nephron 2002;90:158-168.
14. Yamamoto S, Yamaguchi I, Hasegawa K. Tsutsumi S, Goto Y, Gejyo F, Naiki H. Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol 2004;15:126-133.
15. Borysik AJ, Morten IJ, Radford SE, Hewitt EW. Specific glycosaminoglycans promote unseeded amyloid formation from beta2-microglobulin under physiological conditions. Kidney Int 2007;72:174-181.
16. Linke RP, Hampl H, Lobeck H, Hewitt EW. Lysine-specific cleavage of beta2-microglobulin in amyloid deposits associated with hemodialysis. Kidney Int 1989; 36:675-681.
17. Relini A, De Stefano S, Torrassa S, Cavalleri O, Rolandi R, Gliozzi A, Giorgetti S, Raimondi S, Marchese L, Verga L, Rossi A, Stoppini M, Bellotti V. Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen. J Biol Chem 2008;283:4912-4920.
18. Motomiya Y, Uji Y, Ando Y. Capillary electrophoretic profile of β2-microglobulin intermediate associated with hemodialysis. Ther Apher Dial 2012;16:350-354.
19. Giorgetti S, Rossi A, Mangione P, Raimondi S, Marini S, Stoppini M, Corazza A, Viglino P, Esposito G, Cetta G, Merlini G, Bellotti V. Beta2-microglobulin isoforms display a heterogeneous affinity for type I collagen. Protein Sci 2005;14:696-702.
20. Naiki H, Hashimoto N, Suzuki S. Kimura H, Nakakuki K, Gejyo F. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 1997;4:223-232.
21. Dudas B, Rose M, Cornelli U, Pavlovich A, Hanin I. Neuroprotective properties of glycosaminoglycans: potential treatment for neurodegenerative disorders. Neurodegener Dis 2008;5:200-205.
22. Ariga T, Miyatake, T, Yu, RK. Role of proteoglycans and glycosaminoglycans in the pathogenesis of Alzheimer’s disease and related disorders: amyloidogenesis and therapeutic strategies- A review. J Neurosci Res 2010;88:2303-2315.
23. Davenport, A. Review article: Low-molecular-weight heparin as an alternative anticoagulant to unfractionated heparin for routine outpatient haemodialysis treatments. Nephrology 2009;14:455-461.