Direct multiplex recombinase polymerase amplification for rapid detection of Staphylococcus aureus and Pseudomonas aeruginosa in food

Document Type : Original article

Authors

NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

Abstract

Food and beverage poisoning is detrimental to people's health since it can lead to fever, stomachaches, and even death. To rapidly detect the presence of foodborne pathogens, conventional PCR assays are currently widely employed. Meanwhile, isothermal PCR methods, in which the amplification reactions take place at a low and constant temperature, have lately emerged as effective and alternative means for quickly identifying pathogens in low-resource settings. Staphylococcus aureus and Pseudomonas aeruginosa are two of the most concerning foodborne bacterial infections. In this work, an isothermal PCR assay based on the Recombinase Polymerase Amplification (RPA) method was developed to simultaneously detect S. aureus and P. aeruginosa with high sensitivity and specificity. The limit of detection for multiplex RPA was 10 and 30 fg/reaction of S. aureus and P. aeruginosa genomic DNA, respectively. Furthermore, the reaction time was reduced to only 25 minutes, with a low incubation temperature of 39°C. Multiplex RPA reactions, in particular, were successful in directly identifying as low as 1 and 5 CFU/reaction of S. aureus and P. aeruginosa cells, respectively, without the need for DNA genome extraction. Moreover, the multiplex RPA reliably detected the two foodborne bacteria in milk, fruit juice, and bottled water samples. In conclusion, the direct multiplex RPA reported in this work offers a quick, easy, sensitive, and effective alternative approach for detecting the presence of S. aureus and P. aeruginosa without the requirement of a pricey instrument or highly-trained personnel.

Keywords


  1. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med 2020;29:4674235.
  2. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603-661.
  3. Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Advances 2017;7:51789-51800.
  4. Koutsogiannou M, Drougka E, Liakopoulos A, Jelastopulu E, Petinaki E, Anastassiou ED, Spiliopoulou I, Christofidou M. Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital. J Clinic Microbiol 2013;51:665-668.
  5. Osmon S, Ward S, Fraser VJ, Kollef MH. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 2004;125:607-616.
  6. Alarcon B, Vicedo B, Aznar R. PCR‐based procedures for detection and quantification of Staphylococcus aureus and their application in food. J Appl Microbiol 2006;100:352-364.
  7. Al-Ahmadi GJ, Roodsari RZ. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR. Ann Burns Fire Disasters 2016;29:264-267.
  8. Priyanka B, Patil RK, Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J Med Res 2016;144:327-338.
  9. Chang CC, Chen CC, Wei SC, Lu HH, Liang YH, Lin CW. Diagnostic devices for isothermal nucleic acid amplification. Sensors 2012;12:8319-8337.
  10. Zhong J, Zhao X. Isothermal amplification technologies for the detection of foodborne pathogens. Food Analytical Methods 2018;11:1543-1560.
  11. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol 2006;4:e204.
  12. Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, Chen X. Recombinase polymerase amplification-based assay for rapid detection of Listeria monocytogenes in food samples. Food Analytical Methods 2017;10:1972-1981.
  13. Liu Hb, Zang YX, Du Xj, Li P, Wang S. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria. J Dairy Sci 2017;100:7016-7025.
  14. Hu J, Wang Y, Su H, Ding H, Sun X, Gao H, Geng Y, Wang Z. Rapid analysis of Escherichia coli O157: H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes. Mol Cell Probes 2020;50:101501.
  15. Ahn H, Batule BS, Seok Y, Kim MG. Single-step recombinase polymerase amplification assay based on a paper chip for simultaneous detection of multiple foodborne pathogens. Anal Chem 2018;90:10211-10216.
  16. Li J, Macdonald J, von Stetten F. A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2018;144:31-67.
  17. Xia S, Chen X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT–RPA. Cell Discov 2020;6:37.
  18. Lau YL, Ismail Ib, Mustapa NIb, Lai MY, Tuan Soh TS, Haji Hassan A, Peariasamy KM, Lee YL, Abdul Kahar MKB, Chong J, Goh PP. Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). PLOS One 2021;16:e0245164.
  19. Geng Y, Liu S, Wang J, Nan H, Liu L, Sun X, Li D, Liu M, Wang J, Tan K. Rapid detection of Staphylococcus aureus in food using a recombinase polymerase amplification-based assay. Food Analytical Methods 2018;11:2847-2856.
  20. Jin XJ, Gong YL, Yang L, Mo BH, Peng YZ, He P, Zhao JN, Li XL. Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa. Chinese J Burns 2018;34:233-239.
  21. Minas K, McEwan NR, Newbold CJ, Scott KP. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 2011;325:162-169.
  22. Choi G, Jung JH, Park BH, Oh SJ, Seo JH, Choi JS, Kim DH, Seo TS. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria. Lab Chip 2016;16:2309-2316.
  23. Affhan S, Dachang W, Xin Y, Shang D. Lactic acid bacteria protect human intestinal epithelial cells from Staphylococcus aureus and Pseudomonas aeruginosa infections. Genet Mol Res 2015;14:17044-17058.
  24. de Ávila BE-F, Pedrero M, Campuzano S, Escamilla-Gómez V, Pingarrón JM. Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Anal Bioanal Chem 2012;403:917-925.
  25. Paniel N, Noguer T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods 2019;8:371.
  26. Fratamico PM, Bagi LK, Cray Jr WC, Narang N, Yan X, Medina M, Liu Y. Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin–producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathog Dis 2011;8:601-607.
  27. Obande GA, Singh KKB. Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections. Infect Drug Resist 2020;13:455-483.
  28. Bhat AI, Rao GP. Characterization of Plant Viruses: Methods and Protocols. Springer 2020.
  29. Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 2014;9:e112146.
  30.  Wu H, Zhao P, Yang X, Li J, Zhang J, Zhang X, Zeng Z, Dong J, Gao S, Lu C. A recombinase polymerase amplification and lateral flow strip combined method that detects Salmonella enterica serotype typhimurium with no worry of primer-dependent artifacts. Front Microbiol 2020;11:1015.