The molecular characteristics of colorectal cancer: Impact of Ibuprofen and hyperthermia

Document Type : Original article

Authors

1 Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

Abstract

Despite various treatment options available for colorectal cancer, the survival rates for patients remain low. This study investigated the effects of hyperthermia and Ibuprofen on human colorectal adenocarcinoma cells (HT-29) viability, proliferation, and gene expression related to tumor suppression, Wnt signaling pathways, proliferation, and apoptosis The cells were exposed to hyperthermia at 42 or 43°C for 3 hours or Ibuprofen at different concentrations (700-1500 μM), and the effects were analyzed through MTT assay, trypan blue staining, and quantitative Real-time PCR. The study used quantitative Real-time PCR (qRT-PCR) to evaluate the effect of hyperthermia and Ibuprofen on the expression of various genes associated with tumor suppression, proliferation, Wnt signaling pathway, and apoptosis. The results revealed that hyperthermia caused a minor reduction in the viability and proliferation of HT-29 cells, but the decrease was not statistically significant (P<0.05). On the other hand, Ibuprofen caused a concentration-dependent decrease in the viability and proliferation of HT-29 cells. Both hyperthermia and Ibuprofen reduced the expression of WNT1, CTNNB1, BCL2, and PCNA genes, and increased the expression of KLF4, P53, and BAX genes. However, the changes in gene expression were not statistically significant in cells treated with hyperthermia. The findings suggest that Ibuprofen is more effective in reducing cancer cell proliferation by promoting apoptosis and inhibiting the Wnt signaling pathway than hyperthermia, which had some impact but was not statistically significant. The study highlights the potential of Ibuprofen as a targeted therapy for colorectal cancer.

Keywords


  1. Douaiher J, Ravipati A, Grams B, Chowdhury S, Alatise O, Are C. Colorectal cancer-global burden, trends, and geographical variations. J Surg Oncol 2017;115:619-630.
  2. Munteanu I, Mastalier B. Genetics of colorectal cancer. J Med Life 2014;7:507-511.
  3. Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, Berry DA. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013;24:1207-1222.
  4. Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel) 2021;13:2025.
  5. Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm 2018;1:139-157.
  6. Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin 2014;64:104-117.
  7. Milleron RS, Bratton SB. ‘Heated’debates in apoptosis. Cell Mol Life Sci 2007;64:2329-2333.
  8. Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, Marder D, Puric E, Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat Rev 2015;41:742-753.
  9. Ghanbarei S, Sattarahmady N, Zarghampoor F, Azarpira N, Hossein-Aghdaie M. Effects of labeling human mesenchymal stem cells with superparamagnetic zinc–nickel ferrite nanoparticles on cellular characteristics and adipogenesis/osteogenesis differentiation. Biotechnol Lett 2021;43:1659-1673.
  10. Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 2010;62:339-345.
  11. Oei A, Kok HP, Oei SB, Horsman MR, Stalpers LJA, Franken NAP, Crezee J. Molecular and biological rationale of hyperthermia as radio-and chemosensitizer. Adv Drug Deliv Rev 2020;163:84-97.
  12. Elming PB, Sørensen BS, Oei AL, Franken NA, Crezee J, Overgaard J, Horsman MR. Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia. Cancers (Basel) 2019;11:60.
  13. Harris RE, Chlebowski RT, Jackson RD, Frid DJ, Ascenseo JL, Anderson G, Loar A, Rodabough RJ, White E, McTiernan A, Women's Health Initiative. Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Res 2003;63:6096-6101.
  14. Doat S, Cénée S, Trétarre B, Rebillard X, Lamy PJ, Bringer JP, Iborra F, Murez T, Sanchez M, Menegaux F. Nonsteroidal anti‐inflammatory drugs (NSAID s) and prostate cancer risk: results from the EPICAP study. Cancer Med 2017;6:2461-2470.
  15. Friis S, Riis AH, Erichsen R, Baron JA, Sørensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case–control study. Ann Intern Med 2015;163:347-355.
  16. Trabert B, Ness RB, Lo-Ciganic W-H, Murphy MA, Goode EL, Poole EM, Brinton LA,  Webb PM,  Nagle CM,  Jordan SJ; Australian Ovarian Cancer Study Group, Australian Cancer Study (Ovarian Cancer);  Risch HA,  Rossing MA, Doherty JA,  Goodman MT, Lurie G, Kjaer SK, ,  Hogdall E,  Jensen A,  Cramer DW,  Terry KL,  Vitonis A,  Bandera EV,  Olson S,  King MG, Chandran U,  Anton-Culver H,  Ziogas A,  Menon U,  Gayther SA,  Ramus SJ, Maharaj AG,  Wu AH,  Pearce CL,  Pike MC,  Berchuck A,  Schildkraut JM,  Wentzensen N; Ovarian Cancer Association Consortium. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium. J Natl Cancer Inst 2014;106.
  17. Shi J, Leng W, Zhao L, Xu C, Wang J, Chen X, Wang Y, Peng X. Nonsteroidal anti-inflammatory drugs using and risk of head and neck cancer: a dose–response meta analysis of prospective cohort studies. Oncotarget 2017;8:99066-99074.
  18. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 2002;94:252-266.
  19. Busson M. Update on ibuprofen. J Int Med Res 1986;14:53-62.
  20. Upadhyay A, Amanullah A, Chhangani D, Joshi V, Mishra R, Mishra A. Ibuprofen induces mitochondrial-mediated apoptosis through proteasomal dysfunction. Mol Neurobiol 2016;53:6968-6981.
  21. Wong RS. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv Pharmacol Sci 2019;2019:3418975.
  22. Gunaydin C, Bilge SS. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J Med 2018;50:116-121.
  23. Jaktaji RP, Zargampoor F. Expression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants. Iran J Pharm Res 2017;16:1185-1189.
  24. Jacopin E, Lehtinen S, Débarre F, Blanquart F. Factors favouring the evolution of multidrug resistance in bacteria. J Royal Society Interface 2020;17:20200105.
  25. Cheraghzadeh M, Kazemi Nezhad SR, Zarghampoor F. The basic of bacterial resistance to antimicrobial drugs. Health Biotechnology and Biopharma (HBB). 2018;2:56-68.
  26. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013;13:714-726.
  27. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2002;2:48-58.
  28. Hamoya T, Fujii G, Miyamoto S, Takahashi M, Totsuka Y, Wakabayashi K, Toshima J, Mutoh M. Effects of NSAIDs on the risk factors of colorectal cancer: a mini review. Genes Environ 2016;38:1-7.
  29. Bonelli P, Tuccillo FM, Calemma R, Pezzetti F, Borrelli A, Martinelli RD, Esposito D, Palaia R, Castello G. Changes in the gene expression profile of gastric cancer cells in response to ibuprofen: a gene pathway analysis. Pharmacogenomics J 2011;11:412-428.
  30. Zhou XM, Wong BC, Fan XM, Zhang HB, Lin MC, Kung HF, Fan DM, Lam SK. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis 2001;22:1393-1397.
  31. Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 2019;110:473-481.
  32. Zhong Z, Virshup DM. Wnt signaling and drug resistance in cancer. Mol Pharmacol 2020;97:72-89.
  33. Yuan S, Tao F, Zhang X, Zhang Y, Sun X, Wu D. Role of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer. BioMed Res Int 2020;2020:9390878.
  34. Leksomboon R, Kumpangnil K. Ibuprofen and diclofenac differentially affect cell viability, apoptosis and morphology changes of human cholangiocarcinoma cell lines. J Taibah Univ Med Sci 2022;17:869-879.
  35. Tetreault MP, Yang Y, Katz JP. Krüppel-like factors in cancer. Nat Rev Cancer 2013;13:701-713.
  36. Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005;7:1074-1082.
  37. Ma Y, Wu L, Liu X, Xu Y, Shi W, Liang Y, Yao L, Zheng J, Zhang J. KLF4 inhibits colorectal cancer cell proliferation dependent on NDRG2 signaling. Oncol Rep 2017;38:975-984.
  38. Shie JL, Chen ZY, Fu M, Pestell RG, Tseng CC. Gut-enriched Krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 2000;28:2969-2976.
  39. Zhang W, Chen X, Kato Y, Evans PM, Yuan S, Yang J, Rychahou PG, Yang VW, He X, Evers BM, Liu C. Novel cross talk of Kruppel-like factor 4 and β-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 2006;26:2055-2064.
  40. Li Z, Zhao J, Li Q, Yang W, Song Q, Li W, Liu J. KLF4 promotes hydrogen-peroxide-induced apoptosis of chronic myeloid leukemia cells involving the bcl-2/bax pathway. Cell Stress Chaperones 2010;15:905-912.
  41. Krstic M, Stojnev S, Jovanovic L, Marjanovic G. KLF4 expression and apoptosis-related markers in gastric cancer. J BUON 2013;18:695-702.
  42. Wang B, Shen A, Ouyang X, Zhao G, Du Z, Huo W, Zhang T, Wang Y, Yang C, Dong P, Watari H, Pfeffer LM, Yue J. KLF4 expression enhances the efficacy of chemotherapy drugs in ovarian cancer cells. Biochem Biophys Res Commun 2017;484:486-492.