1. Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar Drugs 2012;10:963-986.
2. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-998.
3. Mocellin S, Rossi CR, Nitti D. Cancer vaccine development: on the way to break immune tolerance to malignant cells. Exp Cell Res 2004;299:267-278.
4. Massodi I, Moktan S, Rawat A, Bidwell GL, Raucher D. Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. Int J Cancer 2010;126:533-544.
5. Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist Update 2003;6:363-371.
6. Leuschner C, Hansel W. Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Design 2004;10:2299-2310.
7. Papo N, Shahar M, Eisenbach L, Shai Y. A novel lytic peptide composed of D, L amino acids selectively kills cancer cells in culture and in mice. J Biol Chem 2003;278: 21018-21023.
8. Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Pept Sci 2000;55:4-30.
9. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Design 2009;15:2377.
10. Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000;1:141-150.
11. Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 2005;62:784-790.
12. Mai JC, Mi Z, Kim SH, Ng B, Robbins PD. A proapoptotic peptide for the treatment of solid tumors. Cancer Res 2001;61:7709-7712.
13. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999;5:1032-1038.
14. Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002; 66:236-248.
15. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313-1318.
16. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta1999;1462:55-70.
17. Nijnik A, Hancock R. Host defense peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J 2009;2:e1.
18. Thayer AM. Improving peptides. Chem Eng News 2011;89:13-20.
19. Borghouts C, Kunz C, Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 2005;11:713-726.
20. Wang G, Li X, Wang Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009;37:D933-D937.
21. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic acids Res 2010;38:D774-D780.
22. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658-1659.
23. Moody J, Darken CJ. Fast learning in networks of locally-tuned processing units. Neural Comput 1989;1:281-294.
24. Park J, Sandberg IW. Universal approximation using radial basis-function networks. Neural Comput 1991;3:246-257.
25. Duda RO, Hart PE, Stork DG. Pattern Classification, 2nd edition. John Wiley and Sons, 2000.
26. Oqul H, Kalkan AT, Umu SU, Akkaya MS. Trainer: A general-purpose trainable short biosequence classifier. Protein Pept Lett 2013 [Epub ahead of print].
27. Sundelacruz S, Levin M, Kaplan D L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 2009;5:231-246.
28. Mohabatkar H. Prediction of cyclin proteins using Chou's pseudo amino acid composition. Protein Pept Lett 2010;17:1207-1214.
29. Esmaeili M, Mohabatkar H, Mohsenzadeh S. Using the concept of Chou's pseudo amino acid composition for risk type predictionof human papillomaviruses. J Theor Biol 2010;263:203-209.
30. Mohabatkar H, Mohammad-Beigi M, Esmaeili A. Prediction of GABAA receptor proteins using the concept of Chou's pseudoaminoacid composition and support vector machine. J Theor Biol 2011;281:18-23.
31. Mohammad-Beigi M, Behjati M, Mohabatkar H. Prediction of metalloproteinase family based on the concept of Chou's pseudoamino acid composition using a machine learning approach. J Struct Funct Genomics 2011;12:191-197.
33. Mohabatkar H, Mohammad-Beigi M, Abdolahi K, Mohsenzadeh S. Prediction of allergenic proteins by means of the concept of Chous pseudo amino acid composition and a machine learning approach. Med Chem 2013;9;133-137.