Synthesis and coating of nanosilver by vanillic acid and its effects on Dunaliella salina Teod.

Document Type : Original article

Authors

Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran

Abstract

Plant phenolics have high reducing capacity which can be exploited in the synthesis of nanomaterials. In the present study, phytoreductant vanillic acid is used to produce and coat silver nanoparticles. The effects of Ag nanoparticles on the unicellular green algae D. Salina were then investigated. Under optimum  pH and temperature, silver ions were reduced to silver metal by vanillic acid. The absorption spectra of the silver nanoparticles showed a maximum band of 410 nm, which is characteristic of the surface plasmon resonance of silver nanoparticles. Dynamic light scattering (DLS) showed a narrow distribution size with an average of 52 nm. High concentrations of Ag nanoparticles reduced growth, total carotenoids, chlorophyll content, phenolics and antioxidant activity of the algae. Based on these results, phytoreductant vanillic acid can be used for synthesis and coating of nanosilver. Due to the projected increase in quantities and types of nanomaterials which leads to their elevated release into the environment and also because of the toxicity of nanomaterials, an urgent need to evaluate the impacts of nano-sized particles on the environment and living organisms is felt. 

Keywords


1. Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S. Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B 2001;
299:142-146.
2. Joeger R, Klaus T, Granqvist CG. Biologically produced silver-carbon composite materials for optically functional thin-film coating. Adv Mater 2000;12:407-409.
3. Zhou J, Ralston J, Sedev R, Beattie DA. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 2009;331:251-262.
4. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y. Shape controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 2009; 4:171-179. 
5. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009;32:79-84.
6. Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, application and perspectives. Adv Nat Sci: Nanosci Nanotechnol 2013;4:1-20.
7. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. Nanobiotechnol 2011;5:69-78.
8. Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 2003;125:13940-13941.
9. Thakkar KN, Mhatre SS, Parik RY. Biological synthesis of metallic nanoparticles. Nanomedicin 2010;6:257-262.
10. Chandran SP, Chaudhary M, Pasricha R, Ahmad A Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biothechnol Prog 2006;22:577-583.
11. Shahverdi A, Minaeian S, Shahverdi HR. Jamilfar H, Nohi A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc Biochem 2007;42:919-923.
12. Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2010;2:763-770.
13. Safarpour M, Shahverdi AR, Shahverdi HR, Khorramzadeh MR, Gohari A. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J Med Biotech 2009;1:111-115.
14. Kora AJ, Beedu SR, Jayaraman A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic Med Chem Letters 2012;2:17-27.
15. Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-mondeza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different size. J Nanopart Res 2008;10:1343-1348.
16. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA. Time-dependent effect in green synthesis of silver nanoparticles. Int  J Nanomed 2011;6: 667-681.
17. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 2010;49:3280-3294.
18. Jiang H, Manolache S, Wong ACL, Denes FS. Plasma-enhanced deposition of silver nanoparticls on to polymer and metal surface for the generation of antimicrobial characteristics. J Appl Polym Sci 2004;93:1411-1422.
19. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramίrez JT, Yacaman MJ. The bacteriocidal effect of silver nanoparticles. Nanotech 2005;16:2346-2353.
20. Marini M, De Niederhausern N, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromol 2007;8:1246-1254.
21. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 1996;20:933-956.
22. Ben-Amotz A, Shaish A, Moradhay A. Mode of action of massively accumulated β-carotene of Dunaliella bardawill in protecting the alga against damage by excess irradiation. Plant Physiol 1989;91:1040-1043.
23. Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UV-Vis. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. John Wiley and Sons, New York, 2001; F.4.3.1- F.4.3.8.
24. Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 2010;22:43-50.
25. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Comp Anal 2006;19:669–675.
26. Shankar SS, Rai A, Ahmad A, Satry M. Rapid synthesis of Au, Ag and bimetallic Au core-Ag Shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 2004;275:496-502.
27. Shankar SS, Ahmad A, Satry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol 2003;19:1627-1631.
28. Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63;1035-1042.
29. Chou TH, Ding HU, Hung WJ, Liang CH. Antioxidative characteristics and inhibition of melanocyte-stimulating hormone-stimulated melanogenesis of vanillic and vanillic acid from Origanum vulgare. Exp Dermatol 2010;19:742-750.
30. Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S. One step synthesis of biocompatible gold nanopartcles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp. 2007;301:73-79.
31. Oukarroum A, Bras S, Perreault F, Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotox Environ Safe 2012;78:80-85.  
32. Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 2008;390: 396-409.
33. Lee KJ, Nallathamby PD, Browning LM. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos.ACS Nano 2007;1:133-143.
34. Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. Toxicity assessment of manu-factured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 2008;73:1121-1128.