Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol

Document Type : Original article

Authors

1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

3 Department of Neurology, Mostafa Hospital, Shahed University, Tehran, Iran

4 Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

Abstract

Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged data integration strategy (including the construction of miRNA-mRNA regulatory network and systematic data analysis) was conducted in order to investigate MS related miRNAs and their regulatory networks. The final outcome was a bi-layer MS related regulatory network constructed with 27 miRNAs (seven of them were novel) and 59 mRNA targets. To verify the accuracy of the bioinformatics strategy three novel and five previously reported miRNAs from the network model were selected for experimental validation using the real-time PCR assay. The obtained results proved the accuracy of the network. The expression of themiR-24 and miR-137(as novel MS candidate biomarker) and miR-16, and miR-181 (as previously reported MS candidate biomarker) showed significant deregulation in 33 MS patients compared to the control. The optimized data integration strategy conducted in this study found two miRNAs (miR-24and miR-16)that can be considered as candidate biomarkers for MS and also has the potential to generate a regulatory network to aid in further understanding the mechanisms underlying this disease.

Keywords


1. Ha T-Y. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases. Immune Netw 2011;11:227-244.
2. Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K, Werner J, Hackert T, Ruprecht K, Huwer H, Huebers J, Jacobs G, Rosenstiel P, Dommisch H, Schaefer A, Müller-Quernheim J, Wullich B, Keck B, Graf N, Reichrath J, Vogel B, Nebel A, Jager SU, Staehler P, Amarantos I, Boisguerin V, Staehler C, Beier M, Scheffler M, Büchler MW, Wischhusen J, Haeusler SF, Dietl J, Hofmann S, Lenhof HP, Schreiber S, Katus HA, Rottbauer W, Meder B, Hoheisel JD, Franke A, Meese E. Toward the blood-borne miRNome of human diseases. Nat Meth 2011;8:841-843.
3. Bergman P, Piket E, Khademi M, James T, Brundin L, Olsson T, Piehl F, Jagodic M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurology: Neuroimmunol Neuroinflammation 2016;3:e219.
4. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009;10:1252-1259.
5. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 2009;132:3342-3352.
6. Lescher J PF, Schultz V, Redenbach L, Scheidt U, Rosewich H, Nessler S, Fuchs E, Gärtner J, Brück W, Junker A. MicroRNA regulation in experimental autoimmune encephalomyelitis in mice and marmosets resembles regulation in human multiple sclerosis lesions. J Neuroimmunol 2012;15:27-33.
7. Moore CS, Rao VTS, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP. MiR-155 as a multiple sclerosis–relevant regulator of myeloid cell polarization. Ann Neurol 2013;74:709-720.
8. Paraboschi EM, Soldà G, Gemmati D, Orioli E, Zeri G, Benedetti MD, Salviati A, Barizzone N, Leone M, Duga S, Asselta R. Genetic association and altered gene expression of Mir-155 in multiple sclerosis patients. Int JMol Sci 2011;12:8695-8712.
9. Thamilarasan M, Koczan D, Hecker M, Paap B, Zettl UK. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmunity Rev 2012; 11:174-179.
10. Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T. Glatiramer Acetate Treatment Normalizes Deregulated microRNA Expression in Relapsing Remitting Multiple Sclerosis. PLoS One 2011;6:e24604.
11. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2014;266:56-63.
12. Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS, Nejad P, Patel B, Hei H, Khoury S, Quintana F, Kivisakk P, Chitnis T, Weiner HL. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 2013;73:729-740.
13. Keller A, Meese, Eckart, Stahler, Cord Friedrich , Kappel, Andreas , Leidinger, Petra , Backes, Christina ,, inventor; Siemens Healthcare Diagnostics Holding GmbH (Eschborn, DE), assignee. DIAGNOSTIC MIRNA PROFILES IN MULTIPLE SCLEROSIS. United States2015.
14. Matysiak M, Fortak-Michalska M, Szymanska B, Orlowski W, Jurewicz A, Selmaj K. MicroRNA-146a negatively regulates the immunoregulatory activity of bone marrow stem cells by targeting prostaglandin E2 synthase-2. J Immunol 2013; 190:5102-5109.
15. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP, Ruprecht K, Meese E. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 2009;4(10).
16. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: A typical multifunctional microRNA. BBA - Mol Basis Dis 2009;1792:497-505.
17. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat rev Genet 2015;16:85-97.
18. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999;27:29-34.
19. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, Montalban X, O'Connor PP, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol. 2001;50:121-127.
20. Tuck MK, Chan DW, Chia D, Godwin AK, Grizzle WE, Krueger KE, Rom W, Sanda M, Sorbara L, Stass S, Wang W, Brenner DE. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 2009;8(1):113-117.
21. Li Y, Du C, Wang W, Ma G, Cui L, Zhou H, Tao H, Yao L, Zhao B, Li K. Genetic association of miR-146a with multiple sclerosis susceptibility in the chinese population. Cell Physiol Biochem 2015;35:281-291.
22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−Delta Delta CT Method. Methods 2001;25:402-408.
23. Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D, Shen B, Guo F. Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J Transl Med 2014;12:1-12.
24. Iyer AN, Bellon A, Baudet M-LM. microRNAs in axon guidance. Front Cell Neurosci 2014;8:78.
25. Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA, Brum DS, Barreira AA, Covas DT, Simões BP, Silva WA Jr, Oliveira MC, Malmegrim KC. Autologous hematopoietic SCT normalizes miR-16,-155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant 2015;50:380-389.
26. Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry 2016,22:44-55
27. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer. J Cell Mol Med 2011;15:14-23.
28. Fayyad-Kazan H, Hamade E, Rouas R, Najar M, Fayyad-Kazan M, El Zein N, ElDirani R, Hussein N, Fakhry M, Al-Akoum C, Burny A, Martiat P, Badran B. Downregulation of microRNA-24 and -181 parallels the upregulation of IFN-gamma secreted by activated human CD4 lymphocytes. Hum Immunol 2014;75:677-685.
29. Xu L-J, Ouyang Y-B, Xiong X, Stary CM, Giffard RG. Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 2015;264:1-7.
30. Yan J, Greer J, McCombe P, Pender M, Consortium A. Characterization of genetic variants in the NFKBIA promoter region in multiple sclerosis. J Neuroimmunol 2014;275:53-54.
31. Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine 2009;45:58-69.
32. Mori F, Rossi S, Piccinin S, Motta C, Mango D, Kusayanagi H, Bergami A, Studer V, Buttari F, Barbieri F, Weiss S, Nisticò R, Martino G, Furlan R, Centonze D. Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J Neurosci 2013;33:19112-19119.
33. Gray SG, Dangond F. Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics 2006;1:67-75.
34. Kornek B, Storch MK, Bauer J, Djamshidian A, Weissert R, Wallstroem E, Stefferl A, Zimprich F, Olsson T, Linington C, Schmidbauer M, Lassmann H. Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 2001;124:1114-1124.