Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology, Commonwealth Avenue, Diliman, Quezon City 1101 Philippines
There has been a concerning increase in the incidence of autoimmune diseases following SARS-CoV-2 infection, with molecular mimicry proposed as a potential mechanism. Our study identified nine fertility-associated proteins (AMH, BMP2, CUBN, DNER, ERCC1, KASH5, MSLN, TPO, and ZP3) that exhibit potential molecular mimicry with MHC-II epitopes of SARS-CoV-2 proteins (N, ORF1A, ORF1AB, and S). We screened for epitopes based on in silico binding using DR-, DQ-, and DP-haplotypes that predispose susceptible individuals to autoimmune diseases. Our systematic analysis revealed that 41 countries with population coverage of over 50% had a pre-COVID pandemic total fertility rate of less than 2.1 births per woman. With over 761 million people from 229 countries and territories infected since December 2019, there may be a potential for a foreseeable negative effect on fertility in specific countries, particularly in high-income economies experiencing rapid demographic changes.
Anifandis G, Tempest HG, Oliva R, Swanson GM, Simopoulou M, Easley CA, Primig M, Messini CI, Turek PJ, Sutovsky P, Ory SJ, Krawetz SA. COVID-19 and human reproduction: A pandemic that packs a serious punch. Syst Biol Reprod Med 2020;67:3-23.
Tur-Kaspa I, Tur-Kaspa T, Hildebrand G, Cohen D. COVID-19 may affect male fertility but is not sexually transmitted: a systematic review. F S Rev 2021;2:140-149.
Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Khatun S. Understanding the crosstalk between mediators of infertility and COVID-19. Reprod Biol 2021;21:100559.
Dotan A, Kanduc D, Muller S, Makatsariya A, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am J Reprod Immunol 2021;86:e13494.
Betsou F, Borrego MJ, Guillaume N, Catry MA, Romao S, Machado-Caetano JA, Sueur JM, Mention J, Faille N, Orfila J. Cross-reactivity between Chlamydia trachomatis heat shock protein 10 and early pregnancy factor. Clin Diagn Lab Immunol 2003;10:446-450.
Kanduc D, Shoenfeld Y. Human papillomavirus epitope mimicry and autoimmunity: The molecular truth of peptide sharing. Pathobiology 2019;86:285-295.
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PSC, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018;95:100-123.
Deocaris CC, Taira K, Kaul SC, Wadhwa R. Mimotope-hormesis and mortalin/grp75/ mthsp70: a new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Lett 2005;579:586-590.
Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, van Eden W, Versalovic J, Weinstock JV, Rook GAW. Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 2006;3:275-284.
Doxey AC, McConkey BJ. Prediction of molecular mimicry candidates in human pathogenic bacteria. Virulence 2013;4:453-466.
Adiguzel Y. Molecular mimicry between SARS-CoV-2 and human proteins. Autoimmun Rev 2021;20:102791.
Angileri F, Legare S, Gammazza AM, de Macario EC, Macario AJ, Cappello F. Molecular mimicry may explain multi-organ damage in COVID-19. Autoimmun Rev 2020;19: 102591.
Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, Alijotas-Reig J, Zinserling V, Semenova N, Amital H, Shoenfeld Y. Covid-19 and autoimmunity. Autoimmun Rev 2020;19:102597.
Kanduc D. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies (Basel) 2020;9:33.
Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 2019; 47(D1):D339-D343.
Brand M, Keşmir C. Evolution of SARS-CoV-2-specific CD4+T cell epitopes. Immunogenetics 2023;31:1-11.
Muscianisi F, De Toni L, Giorato G, Carosso A, Foresta C, Garolla A. Is HPV the novel target in male idiopathic infertility? A systematic review of the literature. Front Endocrinol (Lausanne) 2021;12:643539.
Schmidt F, Abdesselem HB, Suhre K, Sohail M, Al-Nesf M, Bensmail I, Mashod F, Sarwath H, Bernhardt J, Tan TM, Morris PE, Schenck EJ, Price D, Vaikath NN, Mohamed-Ali V, Al-Maadheed M, Arredouani A, Decock J, Blackburn JM, Choi AMK, El-Agnaf O M. Auto-Immunoproteomics Analysis of COVID-19 ICU Patients Revealed Increased Levels of Autoantibodies Related to Male Reproductive System. bioRxiv.
Deocaris, C., & Alinsug, M. (2023). Molecular mimicry and COVID-19: Potential implications for global fertility. Molecular Biology Research Communications, 12(2), 71-76. doi: 10.22099/mbrc.2023.47122.1819
MLA
Custer C. Deocaris; Malona V. Alinsug. "Molecular mimicry and COVID-19: Potential implications for global fertility", Molecular Biology Research Communications, 12, 2, 2023, 71-76. doi: 10.22099/mbrc.2023.47122.1819
HARVARD
Deocaris, C., Alinsug, M. (2023). 'Molecular mimicry and COVID-19: Potential implications for global fertility', Molecular Biology Research Communications, 12(2), pp. 71-76. doi: 10.22099/mbrc.2023.47122.1819
VANCOUVER
Deocaris, C., Alinsug, M. Molecular mimicry and COVID-19: Potential implications for global fertility. Molecular Biology Research Communications, 2023; 12(2): 71-76. doi: 10.22099/mbrc.2023.47122.1819