Natural compounds solasonine and alisol B23-acetate target GLI3 signaling to block oncogenesis in MED12-altered breast cancer

Document Type : Original article

Authors

1 Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA

2 Department of Biology, University of the Incarnate Word, San Antonio, TX, USA

Abstract

Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.

Keywords


  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73:17-48.
  2. Berardi D, Hunter Y, van den Driest L, Farrell G, Rattray NJW, Rattray Z. The differential metabolic signature of breast cancer cellular response to olaparib treatment. Cancers (Basel) 2022;14:3661.
  3. Chang HR, Glaspy J, Allison MA, Kass FC, Elashoff R, Chung DU, Gornbein J. Differential response of triple‐negative breast cancer to a docetaxel and carboplatin‐based neoadjuvant treatment. Cancer 2010;116:4227-4237.
  4. Reynolds DS, Tevis KM, Blessing WA, Colson YL, Zaman MH, Grinstaff MW. Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Sci Rep 2017;7:10382.
  5. Neves Rebello Alves L, Dummer Meira D, Poppe Merigueti L, Correia Casotti M, do Prado Ventorim D, Ferreira Figueiredo Almeida J, Pereira de Sousa V, Cindra Sant'Ana M, Gonçalves Coutinho da Cruz R, Santos Louro L, Mendonça Santana G, Erik Santos Louro T, Salazar RE, Ribeiro Campos da Silva, Stefani Siqueira Zetum, Silva Dos Reis Trabach, Imbroisi Valle Errera, de Paula F, de Vargas Wolfgramm Dos Santos E, Fagundes de Carvalho E, Drumond Louro I. Biomarkers in Breast Cancer: An Old Story with a New End. Genes (Basel) 2023;14:1364.
  6. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, chan S, Griffith M, Moradian A, Grace Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda O, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra M, Aparicio S. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012;486:395-399.
  7. Chao X, Tan W, Tsang JY, Tse GM, Hu J, Li P, Hou J, Li M, He J, Sun P. Clinicopathologic and genetic features of metaplastic breast cancer with osseous differentiation: a series of 6 cases. Breast Cancer 2021;28:1100-1111.
  8. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, Hhompson KM, Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012;486:405-409.
  9. Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015;16:155-166.
  10. Kornberg RD. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 2005;30:235-239.
  11. Mo X, Kowenz-Leutz E, Xu H, Leutz A. Ras induces mediator complex exchange on C/EBPβ. Mol Cell 2004;13:241-250.
  12. Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, Reinberg D. PARP-1 Determines specificity in a retinoid signaling pathway via direct modulation of Mediator. Mol Cell 2005;18:83-96.
  13. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 1998;95:717-728.
  14. Zhou H, Kim S, Ishii S, Boyer TG. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol Cell Biol 2006;26:8667-8682.
  15. Zhou H, Spaeth JM, Kim NH, Xu X, Friez MJ, Schwartz CE, Boyer TG. MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 2012;109:19763-19768.
  16. Duong TM, Rincon MA, Myneni N, Burleson M. Genetic alterations in MED12 promote castration-resistant prostate cancer through modulation of GLI3 signaling. Mol Biol Res Commun 2023;12:63-70.
  17. Katano M. Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett 2005; 227:99-104.
  18. Onishi H, Katano M. Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci 2011;102:1756-1760.
  19. Herranz-López M, Losada-Echeberría M, Barrajón-Catalán E. The multitarget activity of natural extracts on cancer: Synergy and xenohormesis. Medicines (Basel) 2018;6:6.
  20. Zhang Y, Li H, Zhang J, Zhao C, Lu S, Qiao J, Han M. The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment. Phytochem Rev 2020;19:1179-1197.
  21. Liu T, Zhang B, Gao Y, Zhang X, Tong J, Li Z. Identification of ACHE as the hub gene targeting solasonine associated with non-small cell lung cancer (NSCLC) using integrated bioinformatics analysis. PeerJ 2023;11:e16195.
  22. Pei H, Yang J, Li W, Luo X, Xu Y, Sun X, Chen Q, Zhao Q, Hou L, Tan G, Ji D. Solanum nigrum Linn.: Advances in anti-cancer activity and mechanism in digestive system tumors. Med Oncol 2023;40:311.
  23. Winkiel MJ, Chowański S, Słocińska M. Anticancer activity of glycoalkaloids from Solanum plants: A review. Front Pharmacol 2022;13:979451.
  24. Chen Y, Lu J, Xie Z, Tang J, Lian X, Li X. The mechanism of alisol B23 acetate inhibiting lung cancer: Targeted regulation of CD11b/CD18 to influence macrophage polarization. Drug Des Devel Ther 2022;16:3677-3689.
  25. Kwon MJ, Kim JN, Lee MJ, Kim WK, Nam JH, Kim BJ. Apoptotic effects of alisol B 23‑acetate on gastric cancer cells. Mol Med Rep 2021;23:248.
  26. Liu Y, Xia XC, Meng LY, Wang Y, Li YM. Alisol B 23-acetate inhibits the viability and induces apoptosis of non-small cell lung cancer cells via PI3K/AKT/mTOR signal pathway. Mol Med Rep 2019;20:1187-1195.
  27. Wang J, Li H, Wang X, Shen T, Wang S, Ren D. Alisol B-23-acetate, a tetracyclic triterpenoid isolated from Alisma orientale, induces apoptosis in human lung cancer cells via the mitochondrial pathway. Biochem Biophys Res Commun 2018;505:1015-1021.
  28. Zhao Y, Li ETS, Wang M. Alisol B 23-acetate induces autophagic-dependent apoptosis in human colon cancer cells via ROS generation and JNK activation. Oncotarget 2017; 8:70239-70249.
  29. Zhu HC, Jia XK, Fan Y, Xu SH, Li XY, Huang MQ, Lan ML, Xu W, Wu SS. Alisol B 23-acetate ameliorates azoxymethane/dextran sodium sulfate-induced male murine colitis-associated colorectal cancer via modulating the composition of gut microbiota and improving intestinal barrier. Front Cell Infect Microbiol 2021;11:640225.
  30. Cai J, Zhao J, Gao P, Xia Y. Patchouli alcohol inhibits GPBAR1-mediated cell proliferation, apoptosis, migration, and invasion in prostate cancer. Transl Androl Urol 2022;11:1555-1567.
  31. Cai J, Zhao J, Gao P, Xia Y. Patchouli alcohol suppresses castration-resistant prostate cancer progression by inhibiting NF-κB signal pathways. Transl Androl Urol 2022;11:528-542.
  32. Chang KF, Lai HC, Lee SC, Huang XF, Huang YC, Chou TE, Hsiao CY, Tsai NM. The effects of patchouli alcohol and combination with cisplatin on proliferation, apoptosis and migration in B16F10 melanoma cells. J Cell Mol Med 2023;27:1423-1435.
  33. Leong W, Huang G, Liao W, Xia W, Li X, Su Z, Liu L, Wu Q, Wong VKW, Law BYK, Xia C, Guo X, Khan I, Hsiao WLW. Traditional Patchouli essential oil modulates the host’s immune responses and gut microbiota and exhibits potent anti-cancer effects in ApcMin /+ mice. Pharmacol Res 2022;176:106082.
  34. Liang CY, Chang KF, Huang YC, Huang XF, Sheu GT, Kuo CF, Hsiao CY, Tsai NM. Patchouli alcohol induces G0/G1 cell cycle arrest and apoptosis in vincristine‐resistant non‐small cell lung cancer through ROS‐mediated DNA damage. Thorac Cancer 2023; 14:2007-2017.
  35. Yang L, Chen H, Li R, Li H, Rui X, Zhou L, Liu N, Ji Q, Li Q. Mufangji decoction and its active ingredient patchouli alcohol inhibit tumor growth through regulating Akt/mTOR-mediated autophagy in nonsmall-cell lung cancer. Evid Based Complement Alternat Med 2021;2021:2373865.
  36. Yang J, Huang W, Tan W. Solasonine, a natural glycoalkaloid compound, inhibits gli-mediated transcriptional activity. Molecules 2016;21:1364.