Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

Document Type : Original article


1 Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India

2 Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India


The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete genome of SARS-CoV-2 to predict pre-miRNAs. The potential pre-miRNAs were identified by ViralMir and mature miRNAs were recognized by Mature Bayes. Additionally, predicted mature miRNAs were analysed against human genome by miRDB server to retrieve target genes. Besides that we also retrieved GO (Gene Ontology) terms for pathways, functions and cellular components. We predicted 26 mature miRNAs from genome of SARS-CoV-2 that targets human genes involved in pathways like EGF receptor signaling, apoptosis signaling, VEGF signaling, FGF receptor signaling. Gene enrichment tool analysis and substantial literature evidences suggests role of genes like BMPR2 and p53 in pulmonary vasculature and antiviral innate immunity respectively. Our findings may help research community to understand virus pathogenesis.


1. WHO. Coronavirus disease 2019 (COVID-19) Situation Report-77. Available online: (accessed on: April 7, 2020).
2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet  2020; 395:565-574.
3. Jiang S, Shi ZL. The first disease X is caused by a highly transmissible acute respiratory syndrome Coronavirus. Virol Sin 2020.
4. Li X, Song Y, Wong G, Cui J. Bat origin of a new human coronavirus: there and back again. Sci China Life Sci 2020;63:461-462.
5. Bailey ES, Fieldhouse JK, Choi JY, Gray GC. A mini review of the zoonotic threat potential of Influenza viruses, Coronaviruses, Adenoviruses, and Enteroviruses. Front Public Health 2018;6:104-110.
6. Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: A review of virus-host interactions. Diseases 2016;4:E26.
7. Jiang S, Xia S, Ying T, Lu L. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell Mol Immunol 2020.
8. Jiang S, Shi Z, Shu Y, Song J, Gao GF, Tan W, Guo D. A distinct name is needed for the new coronavirus. Lancet 2020;395:949.
9. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der Veer B, van den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MP, Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25.
10. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012;19:586-593.
11. He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-531.
12. Lukasik A, Zielenkiewicz P. Plant microRNAs-novel players in natural medicine? Int J Mol Sci 2016;18:9.
13. Moran Y, Agron M, Praher D, Technau U. The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol 2017;1:27.
14. Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 2012;8:e1003018.
15. Morales L, Oliveros JC, Fernandez-Delgado R, tenOever BR, Enjuanes L, Sola I. SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe 2017;21:344-355.
16. Qinfen Z, Jinming C, Xiaojun H, Huanying Z, Jicheng H, Ling F, Kunpeng L, Jingqiang Z. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol 2004;73:332-337.
17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116: 281-297.
18. Samols MA, Hu J, Skalsky RL, Renne R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 2005;79:9301-9305.
19. Allmer J, Yousef M. Computational methods for ab initio detection of microRNAs. Front Genet 2012;3:209.
20. Kong Y, Han JH. MicroRNA: biological and computational perspective. Genomics Proteomics Bioinformatics 2005;3:62-72.
21. Shi J, Duan Z, Sun J, Wu M, Wang B, Zhang J, Wang H, Hu N, Hu Y. Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches. Virol J 2014;11:121.
22. Baruah V, Bose S. Computational identification of hepatitis E virus-encoded microRNAs and their targets in human. J Med Virol 2019;91:1545-1552.
23.Ospina-Bedoya M, Campillo-Pedroza N, Franco-Salazar JP, Gallego-Gomez JC. Computational identification of Dengue virus microRNA-like structures and their cellular targets. Bioinform Biol Insights 2014;8:169-176.
24. Cristina J, Echeverria N, Gambaro F, Fajardo A, Moreno P. Genome-wide prediction of microRNAs in Zika virus genomes reveals possible interactions with human genes involved in the nervous system development. bioRxiv.
25. Teng Y, Wang Y, Zhang X, Liu W, Fan H, Yao H, Lin B, Zhu P, Yuan W, Tong Y, Cao W. Systematic Genome-wide Screening and Prediction of microRNAs in EBOV During the 2014 Ebolavirus Outbreak. Sci Rep 2015;5:9912.
26. Saxena L. In silico identification of miRNAs and their target prediction from Japanese encephalitis. J Bioinforma Seq Anal 2013;5:25-33.
27. Saini S, Thakur CJ, Kumar V. Genome wide computational prediction of miRNAs in Kyasanur forest disease virus and their targeted genes in human. Innov Thoug Intern Res J 2017;5:13-46.
28. Saini S, Thakur CJ, Kumar V, Tandon S, Bhardwaj V, Maggar S, Namgyal S, Kaur G. Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis. Mol Biol Res Commun 2018;7:107-118.
29. Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 2006;12:733-750.
30. Huang KY, Lee TY, Teng YC, Chang TH. ViralmiR: A support-vector-machine-based method for predicting viral microRNA precursors. BMC Bioinformatics 2015;16:Supp1-S9.
31. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406-3415.
32. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One 2010;5:e11843.
33. Wong N, Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 2015;43:D146-152.
34. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R. Gene Ontology Consortium. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-D261.
35. Kuleshov M V., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S,Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW,Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44(W1):W90-97.
36. Gomes CP, Cho JH, Hood L, Franco OL, Pereira RW, Wang K. A review of computational tools in microRNA discovery. Front Genet 2013;4:81.
37. Sacar Demirci MD, Baumbach J, Allmer J. On the performance of pre-microRNA detection algorithms. Nat Commun 2017;8:330.
38. Lopes Ide O, Schliep A, de Carvalho AC. The discriminant power of RNA features for pre-miRNA recognition. BMC Bioinformatics 2014;15:124.
39. Guo L, Lu Z. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 2010;5:e11387.
40. Akbari Moqadam F, Pieters R, Den Boer ML. The hunting of targets: Challenge in miRNA research. Leukemia 2013;27:16-23.
41. Lai EC. Two decades of miRNA biology: Lessons and challenges. RNA 2015;21:675-677.
42. Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011;411:325-343.
43. Carl JW, Trgovcich J, Hannenhalli S. Widespread evidence of viral miRNAs targeting host pathways. BMC Bioinformatics 2013;14(Suppl 2):S3.
44. Cullen BR. MicroRNAs as mediators of viral immune evasion. Nat Immunol 2013;14:205-210.
45. Collins M. Potential roles of apoptosis in viral pathogenesis. Am J Respir Crit Care Med 1995;152, S20-S24.
46. Kvansakul M. Viral Infection and Apoptosis. Viruses 2017;9:356.
47. Rivas C, Aaronson SA, Munoz-Fontela C. Dual role of p53 in innate antiviral immunity. Viruses 2010;2:298-313.
48. Andruska A, Spiekerkoetter E. Consequences of BMPR2 deficiency in the pulmonary vasculature and beyond: Contributions to pulmonary arterial hypertension. Int J Mol Sci 2018;19:2499.
49. Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in cellular metabolism and immune responses. Front Microbiol 2017;8:1318.
50. Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Herpesviruses and microRNAs: New pathogenesis factors in oral infection and disease? Front Immunol 2018;9:2099.
51. Islam MS, Khan MA, Murad MW, Karim M, Islam ABMMK. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J Med Virol;91:1584-1594.
52. Prasad AN, Ronk AJ, Widen SG, Wood TG, Basler CF, Bukreyev A. Ebola virus produces discrete small non-coding RNAs independent of the host microRNA pathway and which lack RNA interference activity in bat and human cells. J Virol 2020;94.