Comparison of inflammatory molecular mechanisms between osteoarthritis and rheumatoid arthritis via gene microarrays

Document Type : Original article

Authors

1 Orthopedic Department, Bam University of Medical Sciences, Bam, Iran

2 Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

Abstract

Osteoarthritis (OA) and rheumatoid arthritis (RA) treatment requires exact arthritis type diagnosis. We compared inflammatory molecular mechanisms between OA and RA to introduce reliable molecular biomarkers. The GSE55235 and GSE100786 microarray datasets were acquired from the GEO. Data preprocessing and differential expression analysis were conducted in OA and RA groups and their control groups applying GEO2R. Differentially expressed genes (DEGs) with a |LogFC|>1 and adj. p<0.05 were determined. Gene ontology (GO) and signaling pathway analysis were done utilizing PANTHER and Enrichr. The suitability of gene expression alterations as biomarkers was tested using the receiver operating characteristic (ROC) curve analysis. We found 2129 DEGs between the OA and control groups and 2494 DEGs between the RA and control groups. GO on the DEGs showed enrichment in binding, cellular processes, and cellular anatomical entities in molecular functions, biological processes, and cellular components, respectively. Enrichr found the cell differentiation pathways of Th1 and Th2 only in RA. The ROC curve analysis indicated HLA-DQA1 downregulation and MAPK8IP3 upregulation as reliable biomarkers to discriminate RA from OA in peripheral blood and bone marrow samples, respectively. We found more DEGs in patients with OA than those with RA and determined inflammatory pathways and genes unique to RA as reliable biomarkers to discriminate RA from OA. Gene expression alterations associated with Th1 and Th2 cell differentiation pathways, including HLA-DQA1 downregulation and MAPK8IP3 upregulation, could be novel molecular biomarkers to diagnose RA.

Keywords


  1. Roivainen A, Sodersrtom KO, Pirila L, Aro H, Kortekangas P, Merilahti-Palo R, Yli-Jama T, Toivanen A, Toivanen P. Oncoprotein expression in human synovial tissue: an immunohistochemical study of different types of arthritis. Br J Rheumatol 1996;35:933-942.
  2. Bijlsma JW, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011;377:2115-2126.
  3. Xue F, Zhang C, He Z, Ding L, Xiao H. Analysis of critical molecules and signaling pathways in osteoarthritis and rheumatoid arthritis. Mol Med Rep 2013;7:603-607.
  4. Pullig O, Weseloh G, Ronneberger D, Kakonen S, Swoboda B. Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 2000;67:230-240.
  5. Drissi H, Zuscik M, Rosier R, O'Keefe R. Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med 2005;26:169-179.
  6. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2012;51(suppl_5): v3-v11.
  7. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423:356-361.
  8. Hashizume K, Nishida K, Fujiwara K, Kadota Y, Nakahara R, Ezawa K, Inoue H, Ozaki T. Radiographic measurements in the evaluation and classification of elbow joint destruction in patients with rheumatoid arthritis. Clin Rheumatol 2010;29:637-643.
  9. Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-Ladner U, Muller B, Haupl T. Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 2006;49:358-364.
  10. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315-324.
  11. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cook TD, Greenwald R, Hochberg M. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and therapeutic criteria committee of the American rheumatism association. Arthritis Rheum 1986;29: 1039-1049.
  12. Ross C. A comparison of osteoarthritis and rheumatoid arthritis: diagnosis and treatment. Nurse Pract 1997;22:20,23-24, 27-28 passim; quiz 39-41.
  13. Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, Sleiman MSB, Ribeiro DM, Bandinelli S, Tanaka T, Nauck M, Volker U, Delaneau O, Metspalu A, Teumer A, Frayling T, Santoni FA, Reymond A, Kutalik Z. Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. Nat Commun 2021; 12:5647.
  14. Anders S, Huber W. Differential expression analysis for sequence count data. Nature 2010; 1-1.
  15. Rodriguez-Esteban, R, Jiang X. Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Med Genomics 2017;10:59.
  16. Loging W, Harland L, Williams-Jones B. High-throughput electronic biology: mining information for drug discovery. Nat Rev Drug Discov 2007;6:220-230.
  17. Campbell SJ, Gaulton A, Marshall J, Bichko D, Martin S, Brouwer C, Harland L. Visualizing the drug target landscape. Drug Discov Today 2010;15:3-15.
  18. Aibar S, Abaigar M, Campos-Laborie FJ, Sanchez-Santos JM, Hernandez-Rivas JM, De Las Rivas J. Identification of expression patterns in the progression of disease stages by integration of transcriptomic data. BMC bioinformatics 2016;17:11-21.
  19. Bals R, Jany B. Identification of disease genes by expression profiling. Eur Respir J 2001; 18:882-889.
  20. Malakootian M, Gholipour A, Bagheri Moghaddam M, Arabian M, Oveisee M. Potential roles of circular rnas and environmental and clinical factors in intervertebral disc degeneration. Environ Health Eng Manag J 2022;9:189-200.
  21. Malakootian M, Gholipour A, Oveisee M. Comprehensive bioinformatics analysis of key miRNAs and signaling pathways in the body fluids of human knee osteoarthritis. Cell Mol Biol (Noisy-le-grand) 2023;69:88-97.
  22. Khan J, Saal LH, Bittner ML, Chen Y, Trent JM, Meltzer PS. Expression profiling in cancer using cDNA microarrays. Electrophoresis 1999;20:223-229.
  23. Zheng Y, Sun Y, Kuai Y, Fu G, An H, Chen J, Chen J, Zhu J, Wo Y, Wu Y, Song K, Xu Q, Wu D, Huang D, Wang Q, Pan H. Gene expression profiling for the diagnosis of multiple primary malignant tumors. Cancer Cell Int 2021;21:47.
  24. Kang L, Dai C, Wang L, Pan X. Potential biomarkers that discriminate rheumatoid arthritis and osteoarthritis based on the analysis and validation of datasets. BMC Musculoskelet Disord 2022;23:319.
  25. Lu QY, Han QH, Li X, Li ZC, Pan YT, Liu L, Fu QG. Analysis of differentially expressed genes between rheumatoid arthritis and osteoarthritis based on the gene co‑expression network. Mol Med Rep 2014;10:119-124.
  26. Xu Y, Huang YM, Cai D, Liu J, Cao XW. Analysis of differences in the molecular mechanism of rheumatoid arthritis and osteoarthritis based on integration of gene expression profiles. Immunol Lett 2015;168:246-253.
  27. Gholipour A, Malakootian M, Oveisee M. Biomarker role of CH25H and GYPE genes in osteoarthritis and rheumatoid arthritis. Tehran Univ Med J 2023;81:288-294.
  28. Xiong Y, Mi BB, Liu MF, Xue H, Wu QP, Liu GH. Bioinformatics analysis and identification of genes and molecular pathways involved in synovial inflammation in rheumatoid arthritis. Med Sci Monit 2019;25:2246-2256.
  29. Cai P, Jiang T, Li B, Qin X, Lu Z, Le Y, Shen C, Yang Y, Zheng L, Zhao J. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblast‐like synoviocytes. Cell Biochem Funct 2019;37:31-41.
  30. Lin J, Wu G, Zhao Z, Huang Y, Chen J, Fu C, Ye J, Liu X. Bioinformatics analysis to identify key genes and pathways influencing synovial inflammation in osteoarthritis. Mol Med Rep 2018;18:5594-5602.
  31. Zhang R, Yang X, Wang J, Han L, Yang A, Zhang J, Zhang D, Li B, Li Z, Xiong Y. Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome‑wide gene expression profiling analysis. Mol Med Rep 2019;19:30-40.
  32. Zuo B, Zhu J, Xiao F, Wang CL, Shen Y, Chen XD. Identification of novel biomarkers and candidate small molecule drugs in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis of high‐throughput data. Biosci Rep 2020;40:BSR20193823.
  33. Del Rey MJ, Usategui A, Izquierdo E, Canete JD, Blanco FJ, Criado G, Pablos JL. Transcriptome analysis reveals specific changes in osteoarthritis synovial fibroblasts. Ann Rheum Dis 2012;71:275-280.
  34. Lu J, Bi Y, Zhu Y, Huipeng S, Duan W, Zhou J. CD3D, GZMK, and KLRB1 are potential markers for early diagnosis of rheumatoid arthritis, especially in anti-citrullinated protein antibody-negative patients. Front Pharmacol 2021;12:726529.
  35. Coustet B, Agarwal SK, Gourh P, Guedj M, Mayes MD, Dieude P, Wipff J, Avouac J, Hachulla E, Diot E, Cracowski JL, Tiev K, Sibilia J, Mouthon L, Frances C, Amoura Z, Carpentier P, Meyer O, Kahan A, Boileau C, Arnett FC, Allanore Y. Association study of ITGAM, ITGAX, and CD58 autoimmune risk loci in systemic sclerosis: results from 2 large European Caucasian cohorts. J Rheumatol 2011;38:1033-1038.
  36. Mo YQ, Dai L, Zheng DH, Zhu LJ, Wei XN, Pessler F, Shen J, Zhang BY. Synovial infiltration with CD79a-positive B cells, but not other B cell lineage markers, correlates with joint destruction in rheumatoid arthritis. J Rheumatol 2011;38(11):2301-2308.
  37. Bugatti S, Vitolo B, Caporali R, Montecucco C, Manzo A. B cells in rheumatoid arthritis: from pathogenic players to disease biomarkers. Biomed Res Int 2014;2014:681678.
  38. Yoshida Y, Ogata A, Kang S, Ebina K, Shi K, Nojima S, Kimura T, Ito D, Morimoto K, Nishide M, Hosokawa T, Hirano T, Shima Y, Narazaki M, Tsuboi H, Saeki Y, Tomita T, Tanaka T, Kumanogoh A. Semaphorin 4D contributes to rheumatoid arthritis by inducing inflammatory cytokine production: pathogenic and therapeutic implications. Arthritis Rheumatol 2015;67:1481-1490.
  39. Ren X, Geng M, Xu K, Lu C, Cheng Y, Kong L, Cai Y, Hou W, Lu Y, Aihaiti Y, Xu P. Quantitative Proteomic Analysis of Synovial Tissue Reveals That Upregulated OLFM4 Aggravates Inflammation in Rheumatoid Arthritis. J Proteome Res 2021;20:4746-4757.
  40. Huang ZY, Perry E, Huebner JL, Katz B, Li YJ, Kraus VB. Biomarkers of inflammation–LBP and TLR—predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthritis Cartilage 2018;26:1658-1665.
  41. Shang H, Hao Y, Hu W, Hu X, Jin Q. CDH2 gene rs11564299 polymorphism is a risk factor for knee osteoarthritis in a Chinese population: a case–control study. J Orthop Surg Res 2019;14:208.
  42. Zhao G, Shi J, Xia J. Analysis of the association between CDH2 gene polymorphism and osteoarthritis risk. Méd Sci 2018;34:105-112.
  43. Adel Y, Sabry M, El-Sabbagh AM, Sadeq Y. JAK2 mutation may predict response and guide first line treatment in rheumatoid arthritis. Egypt J Int Med 2021;33:1-7.
  44. Lu X, Fan Y, Li M, Chang X, Qian J. HTR2B and SLC5A3 are specific markers in age-related osteoarthritis and involved in apoptosis and inflammation of osteoarthritis synovial cells. Front Mol Biosci 2021;8:691602.
  45. Hu Y, Wu Y, Gan  F, Jiang M, Chen D, Xie M, Jike Y, Bo Z. Identification of potential therapeutic target genes in osteoarthritis. Evid Based Complement Alternat Med 2022; 2022:8027987.
  46. Van den Berg WB, Van de Loo FA, Zwarts WA, Otterness IG. Effects of murine recombinant interleukin 1 on intact homologous articular cartilage: a quantitative and autoradiographic study. Ann Rheum Dis 1988;47:855-863.
  47. Lefebvre V, Peeters-Joris C, Vaes G. Modulation by interleukin 1 and tumor necrosis factor α of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta 1990; 1052:366-378.
  48. Sun F, Zhou JL, Peng PJ, Qiu C, Cao JR, Peng H. Identification of disease-specific hub biomarkers and immune infiltration in osteoarthritis and rheumatoid arthritis synovial tissues by bioinformatics analysis. Dis Markers 2021;2021:9911184.
  49. Malakootian M, Gholipour A, Oveisee M. CD19, ALDH18A1, and CACNA1G as significant Hub genes in end-stage osteoarthritis. Iran J Public Health 2023;52:2651-2662.
  50. Li WC, Bai DL, Xu Y, Chen H, Ma R, Hou WB, Xu RJ. Identification of differentially expressed genes in synovial tissue of rheumatoid arthritis and osteoarthritis in patients. J Cell Biochem 2019;120:4533-4544.
  51. Azamar-Llamas D, Hernandez-Molina G, Ramos-Avalos B, Furuzawa-Carballeda J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm 2017; 2017:5468023.
  52. Ge Y, Zhou L, Chen Z, Mao Y, Li T, Tong P, Shan L. Identification of differentially expressed genes, signaling pathways and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis. Hereditas 2021;158:5.
  53. Cavalli G, Koenders M, Kalabokis V, Kim J, Choon Tan A, Garlanda C, Mantovani A, Dagna L, Joosten LA, Dinarello CA. Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology (Oxford) 2016;55:2220-2229.
  54. Zhang M, Mu H, Lv H, Duan L, Shang Z, Li J, Jiang Y, Zhang R. Integrative analysis of genome-wide association studies and gene expression analysis identifies pathways associated with rheumatoid arthritis. Oncotarget 2016;7:8580-8589.
  55. Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. T Helper Cell Differentiation Their function 2014;15-44.
  56. Chen J, Yang J, Qiao Y, Li X. Understanding the regulatory roles of natural killer T cells in rheumatoid arthritis: T helper cell differentiation dependent or independent?. Scandinavian J immunol 2016;84:197-203.
  57. Harris Jr ED. Rheumatoid arthritis: pathophysiology and implications for therapy. N Engl J Med 1990;322:1277-1289.
  58. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007;148:32-46.
  59. Chen J, Li J, Gao H, Wang C, Luo J, Lv Z, Li X. Comprehensive evaluation of different T-helper cell subsets differentiation and function in rheumatoid arthritis. J Biomed Biotechnol 2012;2012:535361.
  60. Guo J, Zhang T, Cao H, Li X, Liang H, Liu M, Zou Y, Zhang Y, Wang Y, Sun X, Hu F, Du Y, Mo X, Liu X, Yang Y, Yang H, Wu X, Zhang X, Jia H, Jiang H, Hou Y, Liu X, Su Y, Zhang M, Yang H, Wang J, Sun L, Liu L, Padyukov L, Lai L, Yamamoto K, Zhang X, Klareskog L, Xu X, Li Z. Sequencing of the MHC region defines HLA-DQA1 as the major genetic risk for seropositive rheumatoid arthritis in Han Chinese population. Annals Rheum Dis 2019;78:773-780.
  61. Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E. Cancer biomarkers: a systems approach. Nat Biotechnol 2006;24:905-908.