Dysregulated LINC01133 expression in laryngeal carcinoma: Prognostic implications and predicted ceRNA interactome

Document Type : Original article

Authors

1 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Pathology and Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran

4 Family Health Research Institute, Maternal-Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran

5 Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Long non-coding RNAs (lncRNAs) have recently emerged as critical regulators of oncogenic or tumor-suppressive pathways in human cancers. LINC01133 is a lncRNA that has exhibited dichotomous roles in various malignancies but to the best of our knowledge, the role of LINC01133 in laryngeal squamous cell carcinoma (LSCC) has not been previously investigated. This study aimed to investigate the expression, clinical significance, and potential functions of the LINC01133 in LSCC. Integrative bioinformatics analysis of sequencing data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed LINC01133 as a differentially expressed lncRNA in head and neck/laryngeal cancers. Experimental validation via quantitative real-time PCR in 41 pairs of stage III and IV LSCC tissues and normal tissues adjacent to the tumor (NAT) demonstrated significant downregulation of LINC01133 in tumors (p<0.0001). Decreased LINC01133 expression associated with advanced tumor stage (p=0.0206) and lymph node metastasis (p=0.0203). The receiver operating characteristic analysis indicated potential diagnostic utility (AUC=0.7115, p=0.001). Bioinformatic predictions and literature mining suggested two potential competing endogenous RNA (ceRNA) mechanisms whereby LINC01133 may act as a tumor suppressor by sponging miR-205-5p to derepress the leucine-rich repeat kinase 2 (LRRK2) and androgen receptor, leading to dysregulation of cancer-related signaling cascades. This study provides initial evidence that loss of lncRNA LINC01133 expression may promote LSCC tumorigenesis, possibly by dysregulating microRNA interactions. Further verification of its regulatory mechanisms and diagnostic value is warranted.

Keywords


  1. Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF. An update on larynx cancer. CA Cancer J Clin 2017;67:31-50.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71: 209-249.
  3. Richard Boland C. Non-coding RNA: It's not junk. Dig Dis Sci 2017;62:1107-1109.
  4. Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H, Fan T. Long non-coding rNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol 2020;10:598817.
  5. Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F. mechanisms and functions of long non-coding rNAs at multiple regulatory levels. Int J Mol Sci 2019;20:5573.
  6. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding rNAs and its biological functions. Nat Rev Mol Cell Biol 2021;22:96-118.
  7. Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of LncRNA in cancer and therapeutic opportunities. Am J Cancer Res 2019;9:1354-1366.
  8. Bartonicek N, Maag JLV, Dinger ME. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 2016;15:43.
  9. Bhan A, Soleimani M, Mandal S. Long noncoding rNA and cancer: a new paradigm. Cancer Res 2017;77:3965-3981.
  10. Ghafouri-Fard S, Khoshbakht T, Mahmud Hussen B, Taheri M, Mokhtari M. A review on the role of LINC01133 in cancers. Cancer Cell Int 2022;22:270.
  11. Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, Liao QX, Zhang H, Zeng LS, Cui SZ. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer 2018;17:126.
  12. Zhang W, Du M, Wang T, Chen W, Wu J, Li Q, Tian X, Qian L, Wang Y, Peng F, Fei Q, Chen J, He X, Yin L. Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1. Am J Cancer Res 2019;9:779-790.
  13. Kong J, Sun W, Zhu W, Liu C, Zhang H, Wang H. Long noncoding RNA LINC01133 inhibits oral squamous cell carcinoma metastasis through a feedback regulation loop with GDF15. J Surg Oncol 2018;118:1326-1334.
  14. Yang XZ, He QJ, Cheng TT, Chi J, Lei ZY, Tang Z, Liao QX, Zhang H, Zeng LS, Cui SZ. Predictive value of lINC01133 for unfavorable prognosis was impacted by alcohol in esophageal squamous cell carcinoma. Cell Physiol Biochem 2018;48:251-262.
  15. Zhang JH, Li AY, Wei N. Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients. Eur Rev Med Pharmacol Sci 2017;21:2103-2107.
  16. Yin D, Hu ZQ, Luo CB, Wang XY, Xin HY, Sun RQ, Wang PC, Li J, Fan J, Zhou ZJ, Zhou J, Zhou SL. LINC01133 promotes hepatocellular carcinoma progression by sponging miR-199a-5p and activating annexin A2. Clin Transl Med 2021;11:e409.
  17. Zhai X, Wu Y, Wang Z, Zhao D, Li H, Chong T, Zhao J. Long noncoding rNA LINC01133 promotes the malignant behaviors of renal cell carcinoma by regulating the miR-30b-5p/Rab3D axis. Cell Transplant 2020;29:963689720964413.
  18. Zhang D, Zhang Y, Sun X. LINC01133 promotes the progression of cervical cancer via regulating miR-30a-5p/FOXD1. Asia Pac J Clin Oncol 2021;17:253-263.
  19. Zang C, Nie FQ, Wang Q, Sun M, Li W, He J, Zhang M, Lu KH. Long non-coding RNA LINC01133 represses KLF2, P21 and E-cadherin transcription through binding with EZH2, LSD1 in non small cell lung cancer. Oncotarget 2016;7:11696-11707.
  20. Huang CS, Chu J, Zhu XX, Li JH, Huang XT, Cai JP, Zhao W, Yin XY. The C/EBPβ-LINC01133 axis promotes cell proliferation in pancreatic ductal adenocarcinoma through upregulation of CCNG1. Cancer Lett 2018;421:63-72.
  21. Liu M, Shen C, Wang C. Long noncoding RNA LINC01133 confers tumor-suppressive functions in ovarian cancer by regulating Leucine-Rich repeat kinase 2 as an miR-205 sponge. Am J Pathol 2019;189:2323-2339.
  22. Liu S, Xi X. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis. Biochem Biophys Res Commun 2020;553:1088-1094.
  23. Tu Z, Schmollerl J, Cuiffo BG, Karnoub AE. Microenvironmental regulation of long noncoding RNA LINC01133 promotes cancer stem Cell-Like phenotypic traits in triple-negative breast cancers. Stem Cells 2019;37:1281-1292.
  24. Song Z, Zhang X, Lin Y, Wei Y, Liang S, Dong C. LINC01133 inhibits breast cancer invasion and metastasis by negatively regulating SOX4 expression through EZH2. J Cell Mol Med 2019;23:7554-7565.
  25. Zhong C, Zhang Q, Zhang M, Qi Y, Duan S. LINC00662: A new oncogenic LncRNA with great potential. J Cell Physiol 2022;237:1105-1118.
  26. Giulietti M, Righetti A, Principato G, Piva F. LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer. Carcinogenesis 2018;39:1016-1025.
  27. Liu Y, Tang T, Yang X, Qin P, Wang P, Zhang H, Bai M, Wu R, Li F. Tumor-derived exosomal long noncoding RNA LINC01133, regulated by Periostin, contributes to pancreatic ductal adenocarcinoma epithelial-mesenchymal transition through the Wnt/β-catenin pathway by silencing AXIN2. Oncogene 2021;40:3164-3179.
  28. Zhang J, Zhu N, Chen X. A novel long noncoding RNA LINC01133 is upregulated in lung squamous cell cancer and predicts survival. Tumour Biol 2015;36:7465-7471.
  29. Palve V, Pareek M, Krishnan NM, Siddappa G, Suresh A, Kuriakose MA, Panda B. A minimal set of internal control genes for gene expression studies in head and neck squamous cell carcinoma. PeerJ 2018;6:e5207.
  30. Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020;26:4240-4260.
  31. Li R, Chen S, Zhan J, Li X, Liu W, Sheng X, Lu Z, Zhong R, Chen L, Luo X, Hu Y, Ouyang Y, Liu T, Zhang Q, Zhang S. Long noncoding RNA FOXD2-AS1 enhances chemotherapeutic resistance of laryngeal squamous cell carcinoma via STAT3 activation. Cell Death Dis 2020;11:41.
  32. Lin SX, Jiang H, Xiang GZ, Zhang WR, Weng YH, Qiu FD, Wu J, Wang HG. Up-regulation of long non-coding RNA SNHG1 contributes to proliferation and metastasis in laryngeal squamous cell carcinoma. Eur Rev Med Pharmacol Sci 2018;22:1333-1341.
  33. Qu L, Jin M, Yang L, Sun C, Wang P, Li Y, Tian L, Liu M, Sun Y. Expression of long non-coding RNA HOXA11-AS is correlated with progression of laryngeal squamous cell carcinoma. Am J Transl Res 2018;10:573-580.
  34. Jiang S, Zhang Q, Li J, Raziq K, Kang X, Liang S, Sun C, Liang X, Zhao D, Fu S, Cai M. New sights into long Non-Coding rNA LINC01133 in cancer. Front Oncol 2022;12: 908162.
  35. Ferrari E, Gandellini P. Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death Dis 2020;11:980.
  36. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
  37. Su N, Qiu H, Chen Y, Yang T, Yan Q, Wan X. miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncol Rep 2013;29:2297-2302.
  38. Zhang G, Hou X, Li Y, Zhao M. MiR-205 inhibits cell apoptosis by targeting phosphatase and tensin homolog deleted on chromosome ten in endometrial cancer ishikawa cells. BMC Cancer 2014;14:440.
  39. Iorio MV, Visone R, Di Leva G, Donati V, Pertocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res 2007;67:8699-8707.
  40. He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, Wu X. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics 2019;9: 8206-8220.
  41. Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, Wang X, Zhang R, Lee MH, Yang H. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle 2012;11:785-796.
  42. Mao Y, Wu S, Zhao R, Deng Q. MiR-205 promotes proliferation, migration and invasion of nasopharyngeal carcinoma cells by activation of AKT signalling. J Int Med Res 2016;44: 231-240.
  43. Charkiewicz R, Pilz L, Sulewska A, Kozlowski M, Niklinska W, Moniuszko M, Reszec J, Manegold C, Niklinski J. Validation for histology-driven diagnosis in non-small cell lung cancer using hsa-miR-205 and hsa-miR-21 expression by two different normalization strategies. Int J Cancer 2016;138:689-697.
  44. Hezova R, Kovarikova A, Srovnal J, Zemanova M, Harustiak T, Ehrmann J, Hajduch M, Sachlova M, Svoboda M, Slaby O. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus. Tumour Biol 2016;37:8007-8018.
  45. Tian L, Zhang J, Ge J, Xiao H, Lu J, Fu S, Liu M, Sun Y. MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma. Med Oncol 2014;31:785.
  46. Zhou Z, Liu C, Liu K, Lv M, Li B, Lan Z, Chen W, Kang M. Expression and Possible Molecular Mechanisms of microRNA-205-5p in Patients With Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2020;19:1533033820980110.
  47. Zhong G, Xiong X. miR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression. Biol Res 2015;48:60.
  48. Wang B, Lv K, Chen W, Zhao J, Luo J, Wu J, Li Z, Qin H, Wong TS, Yang W, Fu QL, Lei W. miR-375 and miR-205 Regulate the Invasion and Migration of Laryngeal Squamous Cell Carcinoma Synergistically via AKT-Mediated EMT. Biomed Res Int 2016;2016: 9652789.
  49. Wang H, Li J, Tao L, Lv L, Sun J, Zhang T, Wang H, Wang J. MiR-205 regulates LRRK2 expression in dopamine neurons in parkinson's disease through methylation modification. Iran J Public Health 2022;51:1637-1647.
  50. Chen Q, Huang X, Li R. lncRNA MALAT1/miR-205-5p axis regulates MPP(+)-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Transl Res 2018;10:563-572.
  51. Cho HJ, Li G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vacraenenbroeck R, Lobbestael E, Baekelandt V, Taymans JM, He P, Troncoso JC, Shen Y, Cai H. MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2013;22:608-620.
  52. Yan J, Zhao W, Yu W, Cheng H, Zhu B. LRRK2 correlates with macrophage infiltration in pan-cancer. Genomics 2022;114:316-327.
  53. Lopez G, Lazzeri G, Rappa A, Isimbaldi G, Cribiu FM, Guerini-Rocco E, Ferrero S, Vaira V, Di Fonzo A. Comprehensive genomic analysis reveals the prognostic role of LRRK2 copy-number variations in human malignancies. Genes (Basel) 2020;11:846.
  54. Jiang ZC, Chen XJ, Zhou Q, Gong XH, Chen X, Wu WJ. Downregulated LRRK2 gene expression inhibits proliferation and migration while promoting the apoptosis of thyroid cancer cells by inhibiting activation of the JNK signaling pathway. Int J Oncol 2019;55:21-34.
  55. Gu S, Chen J, Zhou Q, Yan M, He J, Han X, Qiu Y. LRRK2 is associated with recurrence-free survival in intrahepatic cholangiocarcinoma and downregulation of LRRK2 suppresses tumor progress in vitro. Dig Dis Sci 2020;65:500-508.
  56. Lebovitz C, Wretham N, Osooly M, Milne K, Dash T, Thornton S, Tessier-Cloutier B, Sathiyaseelan P, Bortnik S, Go NE, Halvorsen E, Cederberg RA, Chow N, Santos ND, Bennewith KL, Nelson BH, Bally MB, Lam WL Gorski SM. Loss of parkinson's susceptibility gene LRRK2 promotes carcinogen-induced lung tumorigenesis. Sci Rep 2021;11:2097.
  57. Meng F, Zhang L, Ren Y, Ma Q. The genomic alterations of lung adenocarcinoma and lung squamous cell carcinoma can explain the differences of their overall survival rates. J Cell Physiol 2019;234:10918-10925.
  58. Looyenga BD, Furge KA, Dykema KJ, Koeman J, Swiatek PJ, Giordano TJ, West AB, Resau JH, The BT, Mackeigan JP. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A 2011;108:1439-1444.
  59. Ho DH, Kim H, Kim J, Sim H, Ahn H, Kim J, Seo H, Chung KC, Park BJ, Son I, Seol W. Leucine-Rich repeat kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain 2015;8:54.
  60. Leong YQ, Koh RY, Chye SM, Ng KY. Unravelling the genetic links between Parkinson's disease and lung cancer. Biol Chem 2023;404:551-567.
  61. Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med 2019;23: 3257-3270.
  62. Hagman Z, Haflidadottir BS, Ceder JA, Larne O, Bjartell A, Lilja H, Edsjo A, Ceder Y. miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients. Br J Cancer 2013;108:1668-1676.
  63. You CP, Tsoi H, Man EPS, Leung MH, Khoo US. Modulating the activity of androgen receptor for treating Breast Cancer. Int J Mol Sci 2022;23:15342.
  64. Antonarakis ES. AR Signaling in human malignancies: prostate cancer and beyond. Cancers (Basel) 2018;10:22.
  65. Yu SQ, Han BM, Shao Y, Wu JT, Zhao FJ, Liu HT, Sun XW, Tang YQ, Xie SJ. Androgen receptor functioned as a suppressor in the prostate cancer cell line PC3 in vitro and in vivo. Chin Med J (Engl) 2009;122:2779-2783.
  66. Han W, Liu M, Han D, Toure AA, Li M, Besschetnova A, Wang Z, Patalano S, Macoska JA, Lam HM, Corey E, He HH, Gao S, Balk SP, Cai C. Exploiting the tumor-suppressive activity of the androgen receptor by CDK4/6 inhibition in castration-resistant prostate cancer. Mol Ther 2022;30:1628-1644.
  67. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM, Yao J, Yeh S, Chang C. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci U S A 2008;105:12182-12187.
  68. Gao S, Gao Y, He HH, Han D, Han W, Avery A, Macoska JA, Liu X, Chen S, Ma F, Chen S, Balk SP, Cai C. Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep 2016;17:966-976.
  69. Grosse A, Bartsch S, Baniahmad A. Androgen receptor-mediated gene repression. Mol Cell Endocrinol 2012;352(1-2):46-56.
  70. Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, Chen S, Nelson PS, Liu XS, Brown M, Balk SP. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 2011;20:457-471.
  71. Huang Q, Sun Y, Ma X, Gao Y, Li X, Niu Y, Zhang X, Chang C. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nat Commun 2017;8:918.
  72. Tang N, Dou X, You X, Li Y, Li X, Liu G. Androgen receptors Act as a tumor suppressor gene to suppress hepatocellular carcinoma cells progression via miR-122-5p/RABL6 signaling. Front Oncol 2021;11:756779.
  73. Hickey TE, Selth LA, Chia KM, Laven-Law G, Milioli HH, Roden D, Jindal S, Hui M, Finlay-Schultz J, Ebrahimie E, Birrell SN, Stelloo S, Iggo R, Alexandrou S, Caldon CE, Abdel-Fatah TM, Ellis IO, Zwart W, Palmieri C, Sartorius CA, Swarbrick A, Lim E, Carroll JS, Tilley WD. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med 2021;27:310-320.
  74. Wei L, Gao H, Yu J, Zhang H, Nguyen TTL, Gu Y, Passow MR, Carter JM, Qin B, Boughey JC, Goetz MP, Weinshiboum RM, Ingle JN, Wang L. Pharmacological Targeting of androgen receptor elicits context-specific effects in estrogen receptor-positive ereast cancer. Cancer Res 2023;83:456-470.
  75. Wang Y, He X, Yu Q, Eng C. Androgen receptor-induced tumor suppressor, KLLN, inhibits breast cancer growth and transcriptionally activates p53/p73-mediated apoptosis in breast carcinomas. Hum Mol Genet 2013;22:2263-2272.
  76. Qin C, Lu Y, Zhang H, Zhang Z, Xu W, Wen S, Gao W, Wu Y. Biological roles and clinical significance of estrogen and androgen receptors in head and neck cancers. J Cancer 2022;13:2189-2199.
  77. Čonkaš J, Sabol M, Ozretić P. 'Toxic Masculinity': what is Known about the role of androgen receptors in head and neck squamous cell carcinoma. Int J Mol Sci 2023;24:3766.
  78. Batelja-Vuletic L, Tomasovic-Lancaric C, Ceppi M, Bruzzone M, Fucic A, Krstanac K, Vucicevic VB. Comparison of androgen receptor, VEGF, HIF-1, Ki67 and MMP9 expression between non-metastatic and metastatic stages in stromal and tumor cells of oral squamous cell carcinoma. Life (Basel) 2021;11:336.
  79. Tomasovic-Loncaric C, Fucic A, Andabak A, Andabak M, Ceppi M, Bruzzone M, Vrdoljak D, Vucicevic-Boras V. Androgen receptor as a biomarker of oral squamous cell carcinoma progression risk. Anticancer Res 2019;39:4285-4289.
  80. Colella G, Izzo G, Carinci F, Campisi G, Muzio LL, D'Amato S, Mazzotta M, Cannavale R, Ferrara D, Minucci S. Expression of sexual hormones receptors in oral squamous cell carcinoma. Int J Immunopathol Pharmacol 2011;24(2 Suppl):129-132.
  81. Yamamoto H, Uryu H, Segawa Y, Tsuneyoshi M. Aggressive invasive micropapillary salivary duct carcinoma of the parotid gland. Pathol Int 2008;58:322-326.
  82. Atef A, El-Rashidy MA, Elzayat S, Kabel AM. The prognostic value of sex hormone receptors expression in laryngeal carcinoma. Tissue Cell 2019;57:84-89.